Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(17): 1729-1732
DOI: 10.1055/a-1912-2293
DOI: 10.1055/a-1912-2293
letter
A Facile and Efficient One-Pot Procedure for the Synthesis of Novel 2-Substituted 3-Thioxoisoindolin-1-one Derivatives
We acknowledge the financial support from University of Tehran.

Abstract
In this paper, a novel and efficient method is reported for the synthesis of novel 2-substituted 3-thioxoisoindolin-1-one derivatives. The method is based on the solvent-free reaction of 2-carboxybenzaldehyde with aliphatic amines and sulfur at 100 °C. This reaction is intensely significant, especially in pharmacy applications, due to the facile synthesis of asymmetric thioxoisoindolin-1-one derivatives with phthalimide backbones.
Key words
3-thioxoisoindolin-1-one - sulfur containing compound - phthalimide - multicomponent reactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1912-2293.
- Supporting Information
Publication History
Received: 17 May 2022
Accepted after revision: 28 July 2022
Accepted Manuscript online:
28 July 2022
Article published online:
14 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Sharma U, Kumar P, Kumar N, Singh B. Mini-Rev. Med. Chem. 2010; 10: 678
- 1b Abdel-Hafez AA. Arch Pharm. Res. 2004; 27: 495
- 1c Meng XB, Han D, Zhang S.-N, Guo W, Cui JR, Li Z.-J. Carbohydr. Res. 2007; 342: 1169
- 1d Tripathi KN, Belal M, Singh RP. J. Org. Chem. 2019; 85: 1193
- 2a Tehrani MB, Emani P, Rezaei Z, Khoshneviszadeh M, Ebrahimi M, Edraki N, Mahdavi M, Larijani B, Ranjbar S, Foroumadi A. J. Mol. Struct. 2019; 1176: 86
- 2b Cui X, Surkus A.-E, Junge K, Topf C, Radnik J, Kreyenschulte C, Beller M. Nat. Commun. 2016; 7: 11326
- 2c Moriyama K, Ishida K, Togo H. Chem. Commun. 2012; 48: 8574
- 3 Miyachi H, Azuma A, Hioki E, Iwasaki S, Kobayashi Y, Hashimoto Y. Biochem. Biophys. Res. Commun. 1996; 224: 426
- 4a Reist M, Carrupt P-A, Francotte E, Testa B. Chem. Res. Toxicol. 1998; 11: 1521
- 4b Narode H, Gayke M, Eppa G, Yadav JS. Org. Process Res. Dev. 2021; 25: 1512
- 5a Makonkawkeyoon S, Limson-Pobre RN. R, Moreira AL, Schauf V, Kaplan G. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 5974
- 5b Tseng S, Pak G, Washenik K, Pomeranz MK, Shupack JL. J. Am. Acad. Dermatol. 1996; 35: 969
- 6a Miyachi H, Azuma A, Kitamoto T, Hayashi K, Kato S, Koga M, Sato B, Hashimoto Y. Bioorg. Med. Chem. Lett. 1997; 7: 1483
- 6b Majumder S. Curr. Top. Med. Chem. 2012; 12: 1456
- 7 Panek D, Więckowska A, Wichur T, Bajda M, Godyń J, Jończyk J, Mika K, Janockova J, Soukup O, Knez D. Eur. J. Med. Chem. 2017; 125: 676
- 8 Huang J, Chen B, Zhou B, Han Y. New J. Chem. 2018; 42: 1181
- 9 Zhu X, Giordano T, Yu Q-S, Holloway HW, Perry TA, Lahiri DK, Brossi A, Greig NH. J. Med. Chem. 2003; 46: 5222
- 10a Steliou K, Mrani M. J. Am. Chem. Soc. 1982; 104: 3104
- 10b Degl’Innocenti A, Capperucci A, Mordinic A, Reginato G, Ricci A, Cerreta F. Tetrahedron Lett. 1993; 34: 873
- 10c Metzner P. Pure Appl. Chem. 1996; 68: 863
- 11 Gayen KS, Chatterjee N. Asian. J. Org. Chem. 2020; 9: 508
- 12 Scerba MT, Siegler MA, Greig NH. Synlett 2021; 32: 917
- 13 Kaboudin B, Yarahmadi V, Kato J.-y, Yokomatsu T. RSC Adv. 2013; 3: 6435
- 14 Yadav AK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2012; 53: 7113
- 15 Gholami F, Moazzam A, Hosseini S, Larijani B, Adib M, Mahdavi M. Tetrahedron Lett. 2022; 100: 153859
- 16 Kuribara T, Nakajima M, Nemoto T. Org. Lett. 2020; 22: 2235
- 17 Nguyen TB, Ermolenko L, Dean WA, Al-Mourabit A. Org. Lett. 2012; 14: 5948
- 18 Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 3887
- 19 Nguyen TB. Adv. Synth. Catal. 2020; 362: 3448
- 20 Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
- 21 Nguyen TB. Asian J. Org. Chem. 2017; 6: 477
- 22 Tang L, Matuska JH, Huang Y-H, He Y-H, Guan Z. ChemSusChem 2019; 12: 2570
- 23 Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
- 24 You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
- 25 Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
- 26 Reddy RS, Zheng S, Lagishetti C, Youa H, He Y. RSC Adv. 2016; 6: 68199
- 27 General Procedure for the Synthesis of Compound 3a–k A mixture of 2-formylbenzoic acid (1, 1 mmol), aliphatic amine derivatives (2a, 1.2 equiv.), and S8 (2 equiv.) were added, and the mixture was stirred at 100 °C under solvent-free conditions for 3 h. When the reaction was completed (TLC), the mixture was cooled at r.t., and the residue was purified with column chromatography from n-hexane/EtOAc (3:1) to afford the compounds 3a–k in 57–86%. 2-Isopropyl-3-thioxoisoindolin-1-one (3a) Yellow oil, yield 68%. 1H NMR (400 MHz, DMSO-d 6): δ = 7.91–7.85 (m, 1 H), 7.84–7.80 (m, 2 H), 7.80–7.76 (m, 1 H), 5.05 (p, J = 6.9 Hz, 1 H), 1.48 (d, J = 7.0 Hz, 6 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 197.34, 169.70, 136.76, 135.01, 134.39, 127.45, 124.33, 123.02, 46.49, 19.86 ppm. Anal. Calcd for C11H11NOS: C, 64.36; H, 5.40; N, 6.82; S, 15.62. Found: C, 64.66; H, 5.21; N, 6.98; S, 15.37. MS (70 eV): m/z = 205 [M+].