Synlett 2023; 34(06): 601-621
DOI: 10.1055/a-1904-0152
account
Chemical Synthesis and Catalysis in India

Benign-Metal-Catalyzed Carbon–Carbon and Carbon–Hetero­atom Bond Formation

Brindaban C. Ranu
a   School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
,
Laksmikanta Adak
b   Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
,
Nirmalya Mukherjee
a   School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
,
Tubai Ghosh
c   Department of Chemistry, Jadavpur University, Kolkata 700032, India
› Author Affiliations
B.C.R. gratefully acknowledges the support of Indian National Science Academy, New Delhi, with their offer to him of the position of INSA Honorary Scientist (Grant no. SP/HS/2019/291). L.A. thanks SERB, DST, Government of India (Project: SRG/2020/001350) and WBDST-BT [Memo No: 1854(Sanc.)/ST/P/S&T/15G-7/2019] for financial support. T.G. thanks UGC-DSKPDF [UGC Award Letter No. F.4-2/2006(BSR)/CH/19-20/0088; Jan 24th, 2020] for his postdoctoral fellowship.


Abstract

Carbon–carbon and carbon–heteroatom bond-formation reactions catalyzed by benign and inexpensive metals are of much interest in organic synthesis, as these reactions provide green and cost-effective routes. This account summarizes our recent contributions to the construction of carbon–carbon and carbon–heteroatom bonds by using benign-metal catalysts. A number of carbon–heteroatom bond formations, including C–N, C–O, C–S, C–Se, C–Te, and C–P bond formations, are discussed. Mechanistic insights into several reactions are also reported

1 Introduction

2 C–C Bond Formation

3 C–N and C–O Bond Formation

4 Carbon–Chalcogen (C–S, C–Se, C–Te) and C–P Bond Formation

5 Conclusions



Publication History

Received: 27 May 2022

Accepted after revision: 19 July 2022

Accepted Manuscript online:
19 July 2022

Article published online:
23 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Carbon–Carbon Bond Formation: Techniques and Applications in Organic Synthesis. Augustine RL. Marcel Dekker; New York: 1979
    • 1b Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 1c Green-Bond Forming Reactions, Vol. 1: Carbon–Carbon and Carbon–Heteroatom. Sharma RK, Banerjee B. de Gruyter; Berlin: 2022
    • 1d Catalyzed Carbon–Heteroatom Bond Formation. Yudin AK. Wiley-VCH; Weinheim: 2011
    • 2a Noble Metal Noble Value: Ru-, Rh-, Pd-Catalyzed Heterocycle Synthesis. Wu X.-F. Imperial College Press; London: 2016
    • 2b Palladium(0)-Catalyzed Cross-Coupling and Cyclocondensations Reactions. Dang TT. VDM Verlag Dr. Müller; Riga: 2011
    • 2c Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
    • 2d Naota T, Takaya H, Murahashi S.-I. Chem. Rev. 1998; 98: 2599
    • 2e Duarah G, Kaishap PP, Begum T, Gogoi S. Adv. Synth. Catal. 2019; 361: 654
    • 2f Modern Rhodium-Catalyzed Organic Reactions. Evans PA. Wiley-VCH;   Weinheim: 2005
    • 2g Tosatti P, Nelson A, Marsden SP. Org. Biomol. Chem. 2012; 3147
    • 2h Labinger JA. Chem. Rev. 2017; 117: 8483
    • 3a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 3b Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 3c Adak L, Hatakeyama T, Nakamura M. Bull. Chem. Soc. Jpn. 2021; 94: 1125
    • 3d Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Hapke M, Hilt G. Wiley-VCH; Weinheim: 2019
    • 3e Baccalini A, Vergura S, Dolui P, Giuseppe Z, Maiti D. Org. Biomol. Chem. 2019; 10119
    • 3f Usman M, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Synthesis 2017; 49: 1419
    • 3g Ananikov VP. ACS Catal. 2015; 5: 1964
    • 3h Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020
    • 3i Satpute DP, Vaidya GN, Lokhande SK, Shinde SD, Bhujbal SM, Chaterjee DR, Rana P, Venkatesh A, Nagpure M, Kumar D. Green Chem. 2021; 23: 6273
    • 3j Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 3k Aneeja T, Neetha M, Afsina CM. A, Anilkumar G. RSC Adv. 2020; 34429
    • 3l Copper Catalysis in Organic Synthesis. Anilkumar G., Saranya S. Wiley-VCH; Weinheim: 2020
    • 4a Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
    • 4b Li C.-J. Can. J. Chem. 2022; 100: 98
  • 5 Saha D, Chatterjee T, Mukherjee M, Ranu BC. J. Org. Chem. 2012; 77: 9379
  • 6 Ahammed S, Kundu D, Ranu BC. J. Org. Chem. 2014; 79: 7391
  • 7 Mukherjee N, Kundu D, Ranu BC. Chem. Commun. 2014; 50: 15784
  • 8 Maity P, Kundu D, Ghosh T, Ranu BC. Org. Chem. Front. 2018; 5: 1586
    • 9a Sekiya A, Ishikawa N. Chem. Lett. 1975; 277
    • 9b Takagi K, Okamoto T, Sakakibara Y, Ohno A, Oka S, Hayama N. Bull. Chem. Soc. Jpn. 1976; 49: 3177
    • 9c Sundermeier M, Zapf A, Mutyala S, Baumann W, Sans J, Weiss S, Beller M. Chem. Eur. J. 2003; 9: 1828
    • 9d Sundermeier M, Zapf A, Beller M. Angew. Chem. Int. Ed. 2003; 42: 1661
    • 9e Marcantonio KM, Frey LF, Liu Y, Chen Y, Strine J, Phenix B, Wallace DJ, Chen C.-y. Org. Lett. 2004; 6: 3723
    • 9f Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
    • 10a Sundermeier M, Zapf A, Beller M, Sans J. Tetrahedron Lett. 2001; 42: 6707
    • 10b Schareina T, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777
    • 10c Reeves JT, Malapit CA, Buono FG, Sidhu KP, Marsini MA, Sader CA, Fandrick KR, Busacca CA, Senanayake CH. J. Am. Chem. Soc. 2015; 137: 9481
    • 10d Park EJ, Lee S, Chang S. J. Org. Chem. 2010; 75: 2760
    • 10e Luo F.-H, Chu C.-I, Cheng C.-H. Organometallics 1998; 17: 1025
    • 10f Jiang Z, Huang Q, Chen S, Long L, Zhou X. Adv. Synth. Catal. 2012; 354: 589
    • 10g Zhang Z, Liebeskind LS. Org. Lett. 2006; 8: 4331
    • 10h Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
    • 10i Yang Y, Zhang Y, Wang J. Org. Lett. 2011; 13: 5608
  • 11 Ghosh T, Maity P, Ranu BC. Org. Lett. 2018; 20: 1011
  • 12 Qiao H, Sun S, Yang F, Zhu Y, Zhu W, Dong Y, Wu Y, Kong X, Jiang L, Wu Y. Org. Lett. 2015; 17: 6086
  • 13 Ghosh T, Maity P, Ranu BC. J. Org. Chem. 2018; 83: 11758
  • 14 Kundu D, Tripathy M, Maity P, Ranu BC. Chem. Eur. J. 2015; 21: 8727
  • 15 Kundu D, Maity P, Ranu BC. Org. Lett. 2014; 16: 1040
  • 16 Maity P, Kundu D, Ranu BC. Adv. Synth. Catal. 2015; 357: 3617
  • 17 Mukherjee N, Chatterjee T, Ranu BC. Eur. J. Org. Chem. 2015; 4018
  • 18 Ghosh T, Maity P, Ranu BC. ChemistrySelect 2018; 3: 4406
  • 19 Kundu D, Bhadra S, Mukherjee N, Sreedhar B, Ranu BC. Chem. Eur. J. 2013; 19: 15759
  • 20 Mugesh G, du Mont W.-W, Sies H. Chem. Rev. 2001; 101: 2125
  • 21 Stuhr-Hansen N, Beckers EH. A, Engman L, Jansen RA. O. Heteroat. Chem. 2005; 16: 656
  • 22 Okamoto Y. In The Chemistry of Organic Selenium and Tellurium Compounds, Vol. 1. Patai S., Rappoport Z., Wiley; Chichester: 1986: 331
    • 23a Paulmier C. Selenium Reagents and Intermediates in Organic Synthesis. Pergamon; Oxford: 1986
    • 23b Petragnani N. Tellurium in Organic Synthesis. Academic Press; London: 1994
  • 24 Kundu D, Chatterjee T, Ranu BC. Adv. Synth. Catal. 2013; 355: 2285
    • 25a Swapna K, Murthy SN, Jyothi MT, Nageswar YV. D. Org. Biomol. Chem. 2011; 9: 5989
    • 25b Panda N, Jena AK, Mohapatra S. Appl. Catal., A 2012; 433: 258
    • 25c Zhang R, Liu J, Wang S, Niu I, Xia P, Sun W. ChemCatChem 2011; 3: 146
    • 25d Kundu D, Mukherjee N, Ranu BC. RSC Adv. 2013; 3: 117
  • 26 Chatterjee T, Ranu BC. J. Org. Chem. 2013; 78: 7145
  • 27 Maity P, Kundu D, Roy R, Ranu BC. Org. Lett. 2014; 16: 4122
  • 28 Mukherjee N, Kundu D, Ranu BC. Adv. Synth. Catal. 2017; 359: 329
  • 29 Panja S, Maity P, Kundu D, Ranu BC. Tetrahedron Lett. 2017; 58: 3441
  • 30 Ahammed S, Bhadra S, Kundu D, Sreedhar B, Ranu BC. Tetrahedron 2012; 68: 10542
  • 31 Maity P, Ahammed S, Manna RN, Ranu BC. Org. Chem. Front. 2017; 4: 69
  • 32 Ghosh T, Maity P, Kundu D, Ranu BC. New J. Chem. 2016; 40: 9556