Synlett 2022; 33(17): 1751-1755
DOI: 10.1055/a-1892-9911
letter

Dynamic Kinetic Resolution of Azlactones by Bifunctional Thioureas with α‑Trifluoromethyl or Methyl Groups

,
,
,
Carlos A. Román-Chavarría
,
,
We thank the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (DGAPA-UNAM) (Project no. IN209915) and the Consejo Nacional de Ciencia y Tecnología (CONACyT) (Grant no. 254014) for financial support. E.I.J., M.C.-R. and H.D.-S. gratefully acknowledge CONACyT, México for Ph.D. scholarships (Nos. 336875, 271149 and 576662, respectively). We are also thankful to LANCAD-UNAM-DGTIC-252 for supercomputer time.


Abstract

The asymmetric ring opening of azlactones via dynamic kinetic resolution (DKR) is investigated by contrasting thioureas incorporating 1-arylethyl substituents against their more acidic trifluoromethylated analogs. All the catalysts under study outperform Takemoto’s thiourea because of the inclusion of an additional chiral center. However, the difference in yield and selectivity between the fluorinated and non-fluorinated catalysts is minimal. We explain this observation by analysis of calculated transition states. Our findings show that the hydrogen bond (HB) between the NH linked to the 1-arylethyl and the negatively charged oxygen in the benzyloxy ion is the longest in the HB network, whereas the HB between the ammonium group and the same oxygen atom is the shortest. Thus, the substituents and the HB donor ability of this chiral fragment attached to the thiourea are not important in the reaction.

Supporting Information



Publikationsverlauf

Eingereicht: 14. Juni 2022

Angenommen nach Revision: 06. Juli 2022

Accepted Manuscript online:
06. Juli 2022

Artikel online veröffentlicht:
29. Juli 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Current address: Escuela Nacional de Estudios Superiores, Unidad Mérida, UNAM, Carretera Mérida-Tetiz, Km 4, Ucú, C.P. 97357, Yucatán, México.
    • 2a Xie M.-S, Huang B, Li N, Tian Y, Wu X.-X, Deng Y, Qu G.-R, Guo H.-M. J. Am. Chem. Soc. 2020; 142: 19226
    • 2b Mandai H, Hongo K, Fujiwara T, Fujii K, Mitsudo K, Suga S. Org. Lett. 2018; 20: 4811
    • 3a Kikuchi J, Terada M. Angew. Chem. Int. Ed. 2019; 58: 8458
    • 3b Zhang S.-Y, Ruan G.-Y, Geng Z.-C, Li N.-K, Lv M, Wang Y, Wang X.-W. Org. Biomol. Chem. 2015; 13: 5698
    • 3c Zhou J, Wang M.-L, Gao X, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2017; 53: 3531
  • 4 Uraguchi D, Yoshioka K, Ooi T. Nat. Commun. 2017; 8: 14793
  • 5 de Mello AC, Momo PB, Burtoloso AC. B, Amarante GW. J. Org. Chem. 2018; 83: 11399
  • 6 Pantin M, Caillé J, Boeda F, Fontaine L, Pearson-Long MS. M, Bertus P. Eur. J. Org. Chem. 2019; 7359
    • 7a Mavridis E, Bermperoglou E, Pontiki E, Hadjipavlou-Litina D. Molecules 2020; 25: 3173
    • 7b de Azeredo CM. O, Ávila EP, Pinheiro DL. J, Amarante GW, Soares MJ. FEMS Microbiol. Lett. 2017; 364
    • 7c Robinson KR, Mills JJ, Pierce JG. ACS Med. Chem. Lett. 2019; 10: 374
    • 7d Frohock BH, Gilbertie JM, Daiker JC, Schnabel LV, Pierce JG. ChemBioChem 2020; 21: 933
    • 7e Mills JJ, Robinson KR, Zehnder TE, Pierce JG. Angew. Chem. Int. Ed. 2018; 57: 8682
    • 7f Das Mahapatra A, Queen A, Yousuf M, Khan P, Hussain A, Rehman MT, Alajmi MF, Datta B, Hassan MI. J. Biomol. Struct. Dyn. 2022; 40: 3144
    • 7g Haneen DS. A, Abou-Elmagd WS. I, Youssef AS. A. Synth. Commun. 2021; 51: 215
    • 7h Wieczorek-Błauż A, Błauż A, Rychlik B, Plażuk D. J. Organomet. Chem. 2021; 953: 122026
    • 7i Cativiela C, Diaz-de-Villegas MD. 5(2H)-Oxazolones and 5(4H)-Oxazolones . In Oxazoles: Synthesis, Reactions, and Spectroscopy . John Wiley & Sons; Hoboken: 2004: 129-330
    • 8a Ozturk Urut G, Alp S, Topkaya D. Dyes Pigm. 2017; 145: 103
    • 8b Kratochvil MJ, Carter MC. D, Lynn DM. ACS Appl. Mater. Interfaces 2017; 9: 10243
    • 8c Neri G, Scala A, Fazio E, Mineo PG, Rescifina A, Piperno A, Grassi G. Chem. Sci. 2015; 6: 6961
    • 8d Rodrigues CA. B, Mariz IF. A, Maçôas EM. S, Afonso CA. M, Martinho JM. G. Dyes Pigm. 2013; 99: 642
  • 9 de Castro PP, Batiasta GM. F, dos Santos HF, Amarante GW. ACS Omega 2018; 3: 3507
  • 10 Brown SA, Parker M.-C, Turner NJ. Tetrahedron: Asymmetry 2000; 11: 1687
  • 11 Metrano AJ, Miller SJ. J. Org. Chem. 2014; 79: 1542
    • 12a Lu G, Birman VB. Org. Lett. 2011; 13: 356
    • 12b Zhang Y.-C, Yang Q, Yang X, Zhu Q.-N, Shi F. Asian J. Org. Chem. 2016; 5: 914
    • 13a Tallon S, Manoni F, Connon SJ. Angew. Chem. Int. Ed. 2015; 54: 813
    • 13b Li P, Hu X, Dong X.-Q, Zhang X. Molecules 2016; 21: 1327
    • 13c Rodríguez-Docampo Z, Quigley C, Tallon S, Connon SJ. J. Org. Chem. 2012; 77: 2407
    • 13d Berkessel A, Cleemann F, Mukherjee S, Müller TN, Lex J. Angew. Chem. Int. Ed. 2005; 44: 807
    • 13e Berkessel A, Mukherjee S, Cleemann F, Muller TN, Lex J. Chem. Commun. 2005; 1898
    • 13f Berkessel A, Mukherjee S, Müller TN, Cleemann F, Roland K, Brandenburg M, Neudörfl J.-M, Lex J. Org. Biomol. Chem. 2006; 4: 4319
  • 14 Li X, Deng H, Zhang B, Li J, Zhang L, Luo S, Chen J.-P. Chem. Eur. J. 2010; 16: 450
  • 15 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 16 Lippert KM, Hof K, Gerbig D, Ley D, Hausmann H, Guenther S, Schreiner PR. Eur. J. Org. Chem. 2012; 5919
    • 17a Jiménez EI, Vallejo Narváez WE, Román-Chavarría CA, Vazquez-Chavez J, Rocha-Rinza T, Hernández-Rodríguez M. J. Org. Chem. 2016; 81: 7419
    • 17b Trejo-Huizar KE, Ortiz-Rico R, de los Angelos Peña-González M, Hernández-Rodríguez M. New J. Chem. 2013; 37: 2610
  • 18 Gottwald K, Seebach D. Tetrahedron 1999; 55: 723
  • 19 DKR of Azlactone 3f (Table [1], entry 11); Representative Procedure In a 4 mL vial, the azlactone 2a (50.2 mg, 0.2 mmol, 1 equiv.) and catalyst A2F (4 mg, 0.01 mmol, 0.05 equiv.) were dissolved in toluene (0.66 mL). Benzyl alcohol (0.03 mL, 0.3 mmol, 1.5 equiv.) was added and the mixture stirred for 24 h. The solvent was removed and the crude product was adsorbed on Celite and subjected to purification by column chromatography (hexane/ethyl acetate, 8:2) to afford 3f (66.1 mg, 92%) as a white solid. Mp 95–97 °C; [α]D 25 –29.3 (78% ee) (c 1.05, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.74 (d, J = 7.0 Hz, 2 H), 7.54–7.20 (m, 11 H), 7.06 (d, J = 1.5 Hz, 2 H), 6.70 (d, J = 7.5 Hz, 1 H), 5.36–5.04 (m, 3 H), 3.40–3.11 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 171.6, 166.9, 135.8, 135.1, 134.0, 131.8, 129.5, 128.7, 128.7, 128.6, 127.2, 127.1, 67.4, 53.6, 37.9. DART (positive): m/z (%) = 360 (100) [M + H]+. HPLC: Chiralpak IA, hexane/ethanol = 90:10, 0.8 mL/min, λ = 220 nm, t R = 20.5 min (R) and t R = 22.3 min (S).
  • 20 Fuentes de Arriba ÁL, Rubio OH, Simón L, Alcázar V, Monleón LM, Sanz F, Morán JR. Tetrahedron: Asymmetry 2017; 28: 819
  • 21 Li X, Zhang B, Xi Z.-G, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 416
  • 22 Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151