Synthesis 2023; 55(11): 1662-1670
DOI: 10.1055/a-1878-7795
short review
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

Synthetic Strategies Towards the Meroterpenoids Cochlearols A and B from Ganoderma cochlear

Stephen A. Chamness
,
Emily F. Traficante
,
Trenton R. Vogel
,
This work was supported by the National Science Foundation (NSF CHE-1654223), the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation, and the Camille and Henry Dreyfus Foundation (fellowships to C.S.S.).


Abstract

Since the first reports of their isolation, the meroterpenoids cochlearol A and B have attracted interest from the synthetic community for their unique structural features. This review describes the attempted and successful total syntheses of these natural products and provides a summary of the strategies developed in the years since their isolation.

1 Introduction

2 Overview of Cochlearol A Syntheses

3 Tong’s Approach Towards Cochlearol A

4 Liu and Qin’s Total Synthesis of (±)-Cochlearol A

5 Ishigami’s Formal Synthesis of (±)-Cochlearol A

6 Chandrasekhar’s Formal Synthesis of (±)-Cochlearol A

7 Sugita’s Synthesis of (±)-Cochlearol B

8 Schindler’s Synthesis of (+)-Cochlearol B

9 Conclusions



Publication History

Received: 18 May 2022

Accepted after revision: 20 June 2022

Accepted Manuscript online:
20 June 2022

Article published online:
09 March 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Upadhyay M, Shrivastava B, Jain A, Kidwai M, Kumar S, Gomes J, Goswami D, Panda D, Kuhad R. Ann. Microbiol. 2014; 64: 839
  • 2 Peng X, Qiu M. Nat. Prod. Bioprospect. 2018; 8: 137
  • 3 Gong T, Yan R, Chen R, Yang B. Chemical Components of Ganoderma . In Advances in Experimental Medicine and Biology, Vol. 1181. Lin Z, Yang B. Springer; Singapore: 2019: 59
  • 4 Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Molecules 2019; 24: 4075
    • 5a Paterson RR. M. Phytochemistry 2006; 67: 1985
    • 5b Zhang L.-J, Xie Y, Wang Y.-Q, Xu Y.-Y, Mei R.-Q. Nat. Prod. Res. 2021; 35: 2199
    • 5c Qin F.-Y, Chen Y.-Y, Zhang J.-J, Cheng Y.-X. Front. Chem. 2022; 10: 881298
  • 6 Dou M, Di L, Zhou L.-L, Yan Y.-M, Wang X.-L, Zhou F.-J, Yang Z.-L, Li R.-T, Hou F.-F, Cheng YX. Org. Lett. 2014; 16: 6064
  • 7 Ren J. Studies on Diastereoselective Dichlorination and Total Syntheses of Natural Products with 6,8-Dioxabicyclo[3.2.1]octane Framework. In Ph.D. Thesis. Hong Kong University of Science and Technology; Hong Kong: 2015. https://hdl.handle.net/1783.1/94654
  • 8 Achmatowicz O, Bukowski P, Szechner B, Zwierzchowska Z, Zamojski A. Tetrahedron 1971; 27: 1973
    • 9a Mitchell LJ, Lewis W, Moody CJ. Green Chem. 2013; 15: 2830
    • 9b Schiel C, Oelgemöller M, Ortner J, Mattay J. Green Chem. 2001; 3: 224
  • 10 Zhang D.-W, Xu W.-D, Fan H.-L, Liu H.-M, Chen D, Liu D.-D, Qin H.-B. Org. Lett. 2019; 21: 6761
  • 11 Naruse K, Katsuta R, Yajima A, Nukada T, Watanabe H, Ishigami K. Tetrahedron Lett. 2020; 61: 151845
  • 12 Li X, Liu X, Jiao X, Yang H, Yao Y, Xie P. Org. Lett. 2016; 18: 1944
  • 13 Nicolaou KC, Gray DL. F. J. Am. Chem. Soc. 2004; 126: 607
  • 14 Concellón JM, Cuervo H, Fernández-Fano R. Tetrahedron 2001; 57: 8983
  • 15 Venkatesh T, Mainkar PS, Chandrasekhar S. J. Org. Chem. 2021; 86: 5412
  • 16 Mashiko T, Shingai Y, Sakai J, Kamo S, Adachi S, Matsuzawa A, Sugita K. Angew. Chem. Int. Ed. 2021; 60: 24484
    • 17a Bredereck H, Simchen G, Rebsdat S, Kantlehner W, Horn P, Wahl R, Hoffman H, Greishaber P. Chem. Ber. 1968; 101: 41
    • 17b Shiina Y, Tomata Y, Miyashita M, Tanino K. Chem. Lett. 2010; 39: 835
  • 18 Richardson AD, Vogel TR, Traficante EF, Glover KJ, Schindler CS. Angew. Chem. Int. Ed. 2022; 61: e202201213
  • 19 Wang J, Dong Z, Yang C, Dong G. Nat. Chem. 2019; 11: 1106
  • 20 Hoye TR, Humpal PE, Moon B. J. Am. Chem. Soc. 2000; 122: 4982