Synthesis 2022; 54(18): 3907-3927
DOI: 10.1055/a-1846-6139
review

Activation Modes in Asymmetric Anion-Binding Catalysis

Lukas-M. Entgelmeier
,
Olga García Mancheño
The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for generous support. L.-M.E. also thanks the DFG within the SFB1459 award for a Ph.D. contract.


Abstract

Over the past two decades, enantioselective anion-binding catalysis has emerged as a powerful strategy for the induction of chirality in organic transformations. The stereoselectivity is achieved in a range of different reactions by using non-covalent interactions between a chiral catalyst and an ionic substrate or intermediate, and subsequent formation of a chiral contact ion pair upon anion binding. This strategy offers vast possibilities in catalysis and the constant development of new reactions has led to various substrate activation approaches. This review provides an overview on the different activation modes in asymmetric anion-binding catalysis by looking at representative examples and recent advances made in this field.

1 Introduction

2 Electrophile Activation by Single Anion-Binding Catalysis

2.1 Prior In Situ Charged Electrophiles

2.2 Neutral Electrophile Activation via Anion Abstraction

2.2.1 Anion Abstraction via an SN1 Mechanism

2.2.2 Anion Abstraction via an SN2 Mechanism

3 Nucleophile Activation and Delivery

4 Bifunctional and Cooperative Co-catalysis Strategies

4.1 Amine Groups for Bifunctional and Cooperative Catalysis

4.2 Brønsted Acid Co-catalysis

4.3 Lewis Acid Co-catalysis

4.4 Lewis Base Co-catalysis

4.5 Nucleophilic Co-catalysis for Activation of Electrophiles

4.6 Cooperative Metal and Anion-Binding Catalysis

4.7 Combination of Photoredox and Anion-Binding Catalysis

5 Anion-π Catalysis

6 Conclusion



Publication History

Received: 03 April 2022

Accepted after revision: 09 May 2022

Accepted Manuscript online:
09 May 2022

Article published online:
27 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sessler JL, Gale PA, Cho WS. Anion Receptor Chemistry . In Monographs in Supramolecular Chemistry . Stoddart JF. RSC Publishing; Cambridge: 2006
  • 2 Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Physiol. Rev. 2002; 82: 503
    • 3a Kotke M, Schreiner PR. Tetrahedron 2006; 62: 434
    • 3b Dressler F, Schreiner PR. From Anion Recognition to Organocatalytic Chemical Reactions . In Anion-Binding Catalysis . García Mancheño O. Wiley-VCH; Weinheim: 2022
  • 4 Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
    • 5a García Mancheño O. Anion-Binding Catalysis . Wiley-VCH; Weinheim: 2022
    • 5b Visco MD, Attard J, Guan Y, Mattson AE. Tetrahedron Lett. 2017; 58: 2623
    • 5c Schifferer L, Stinglhamer M, Kaur K, García Mancheño O. Beilstein J. Org. Chem. 2021; 17: 2270
    • 5d Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 5e Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 5f Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518

      For general overviews on hydrogen-bonding catalysis, see:
    • 6a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 6b Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 6c Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 6d Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
    • 6e Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 8a Schottel BL, Chifotides HT, Dunbar KR. Chem. Soc. Rev. 2008; 37: 68
    • 8b Zhao Y, Cotelle Y, Liu L, López-Andarias J, Bornhof A.-B, Akamatsu M, Sakai N, Matile S. Acc. Chem. Res. 2018; 51: 2255
  • 9 Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
    • 10a Pan SC, Zhou J, List B. Synlett 2006; 3275
    • 10b Pan SC, List B. Synlett 2007; 318
    • 10c Pan SC, List B. Org. Lett. 2007; 9: 1149
    • 10d Pan SC, Zhou J, List B. Angew. Chem. Int. Ed. 2007; 46: 612
    • 10e Pan SC, List B. Chem. Asian J. 2008; 3: 430
  • 11 Reissert A. Ber. Dtsch. Chem. Ges. 1905; 38: 1603
  • 12 Taylor MS, Tokunaga N, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 6700
  • 13 Schafer AG, Wieting JM, Fisher TJ, Mattson AE. Angew. Chem. Int. Ed. 2013; 52: 11321
  • 14 Wieting JM, Fisher TJ, Schafer AG, Visco MD, Gallucci JC, Mattson AE. Eur. J. Org. Chem. 2015; 525
  • 15 Fox F, Neudörfl JM, Goldfuss B. Beilstein J. Org. Chem. 2019; 15: 167
  • 16 Choudhury AR, Mukherjee S. Chem. Sci. 2016; 7: 6940
  • 17 Matador E, Iglesias-Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Angew. Chem. Int. Ed. 2021; 60: 5096
  • 18 Zurro M, Asmus S, Beckendorf S, Mück-Lichtenfeld C, García Mancheño O. J. Am. Chem. Soc. 2014; 136: 13999
  • 19 Zurro M, Asmus S, Bamberger J, Beckendorf S, García Mancheño O. Chem. Eur. J. 2016; 22: 3785
  • 20 García Mancheño O, Asmus S, Zurro M, Fischer T. Angew. Chem. Int. Ed. 2015; 54: 8823
  • 21 Fischer T, Bamberger J, García Mancheño O. Org. Biomol. Chem. 2016; 14: 5794
  • 22 Kaur K, Humbrías-Martín J, Hoppmann L, Fernández-Salas JA, Daniliuc CG, Alemán J, García Mancheño O. Chem. Commun. 2021; 57: 9244
  • 23 Fischer T, Duong Q.-N, García Mancheño O. Chem. Eur. J. 2017; 23: 5983
  • 24 Gómez-Martínez M, De Carmen Pérez-Aguilar M, Piekarski DG, Daniliuc CG, García Mancheño O. Angew. Chem. Int. Ed. 2021; 60: 5102
  • 25 Ostler F, Piekarski DG, Danelzik T, Taylor MS, García Mancheño O. Chem. Eur. J. 2021; 27: 2315
  • 26 Breugst M, Koenig JJ. Eur. J. Org. Chem. 2020; 5473
    • 27a Burns NZ, Witten MR, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 14578
    • 27b Hardman-Baldwin AM, Visco MD, Wieting JM, Stern C, Kondo S.-I, Mattson AE. Org. Lett. 2016; 18: 3766
    • 27c Fischer T, Bamberger J, Gómez-Martínez M, Piekarski DG, García Mancheño O. Angew. Chem. Int. Ed. 2019; 58: 3217
    • 27d Witten MR, Jacobsen EN. Angew. Chem. Int. Ed. 2014; 53: 5912
  • 28 Metz AE, Ramalingam K, Kozlowski MC. Tetrahedron Lett. 2015; 56: 5180
    • 29a Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 29b Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
    • 29c Jungbauer SH, Huber SM. J. Am. Chem. Soc. 2015; 137: 12110
    • 29d Ford DD, Lehnherr D, Kennedy CR, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 7860
    • 29e Ford DD, Lehnherr D, Kennedy CR, Jacobsen EN. ACS Catal. 2016; 6: 4616
    • 29f Lehnherr D, Ford DD, Bendelsmith AJ, Kennedy CR, Jacobsen EN. Org. Lett. 2016; 18: 3214
    • 29g Kennedy CR, Lehnherr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13525
  • 30 Dorel R, Feringa BL. Angew. Chem. Int. Ed. 2020; 59: 785
  • 31 Yeung CS, Ziegler RE, Porco JA, Jacobsen EN. J. Am. Chem. Soc. 2014; 136: 13614
  • 32 Brown AR, Kuo W.-H, Jacobsen EN. J. Am. Chem. Soc. 2010; 132: 9286
  • 33 Wasa M, Liu RY, Roche SP, Jacobsen EN. J. Am. Chem. Soc. 2014; 136: 12872
  • 34 Bendelsmith AJ, Kim SC, Wasa M, Roche SP, Jacobsen EN. J. Am. Chem. Soc. 2019; 141: 11414
  • 35 Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
  • 36 Sun L, Wu X, Xiong D.-C, Ye X.-S. Angew. Chem. Int. Ed. 2016; 55: 8041
  • 37 Kutateladze DA, Strassfeld DA, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 6951
  • 38 Ohmatsu K, Hamajima Y, Ooi T. J. Am. Chem. Soc. 2012; 134: 8794
  • 39 Ohmatsu K, Kiyokawa M, Ooi T. J. Am. Chem. Soc. 2011; 133: 1307
    • 40a Pupo G, Ibba F, Ascough DM. H, Vicini AC, Ricci P, Christensen KE, Pfeifer L, Morphy JR, Brown JM, Paton RS, Gouverneur V. Science 2018; 360: 638
    • 40b Pupo G, Vicini AC, Ascough DM. H, Ibba F, Christensen KE, Thompson AL, Brown JM, Paton RS, Gouverneur V. J. Am. Chem. Soc. 2019; 141: 2878
    • 40c Roagna G, Ascough DM. H, Ibba F, Vicini AC, Fontana A, Christensen KE, Peschiulli A, Oehlrich D, Misale A, Trabanco AA, Paton RS, Pupo G, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 14045
  • 41 Wang J, Horwitz MA, Dürr AB, Ibba F, Pupo G, Gao Y, Ricci P, Christensen KE, Pathak TP, Claridge TD. W, Lloyd-Jones GC, Paton RS, Gouverneur V. J. Am. Chem. Soc. 2022; 144: 4572
  • 42 Pupo G, Gouverneur V. J. Am. Chem. Soc. 2022; 144: 5200
  • 44 Jarvis CL, Hirschi JS, Vetticatt MJ, Seidel D. Angew. Chem. Int. Ed. 2017; 56: 2670
    • 45a Collar AG, Trujillo C, Connon SJ. Chem. Eur. J. 2019; 25: 7270
    • 45b Collar AG, Trujillo C, Lockett-Walters B, Twamley B, Connon SJ. Chem. Eur. J. 2019; 25: 7275
  • 46 Tamura Y, Wada A, Sasho M, Kita Y. Tetrahedron Lett. 1981; 22: 4283
  • 47 Mofaddel N, Bar N, Villemin D, Desbène PL. Anal. Bioanal. Chem. 2004; 380: 664
  • 48 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 49a Sun Y.-L, Wei Y, Shi M. ChemCatChem 2017; 9: 718
    • 49b Serdyuk OV, Heckel CM, Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
    • 49c Connon SJ. Chem. Eur. J. 2006; 12: 5418
    • 49d Parvin T, Yadav R, Choudhury LH. Org. Biomol. Chem. 2020; 18: 5513
    • 49e Lalonde MP, McGowan MA, Rajapaksa NS, Jacobsen EN. J. Am. Chem. Soc. 2013; 135: 1891
    • 50a Wang Y, Yu T.-Y, Zhang H.-B, Luo Y.-C, Xu P.-F. Angew. Chem. Int. Ed. 2012; 51: 12339
    • 50b Gu Y, Wang Y, Yu T.-Y, Liang Y.-M, Xu P.-F. Angew. Chem. Int. Ed. 2014; 53: 14128
    • 50c Jia Z.-L, Wang Y, Zhao C.-G, Zhang X.-H, Xu P.-F. Org. Lett. 2017; 19: 2130
    • 50d Jia Z.-L, Wang Y, Xu G.-Q, Xu P.-F. Chem. Commun. 2017; 53: 4938
  • 51 Hong L, Sun W, Yang D, Li G, Wang R. Chem. Rev. 2016; 116: 4006
  • 52 Zhao C, Chen SB, Seidel D. J. Am. Chem. Soc. 2016; 138: 9053
    • 53a Wang C, Chen Y.-H, Wu H.-C, Wang C, Liu Y.-K. Org. Lett. 2019; 21: 6750
    • 53b Zhang X.-Q, Lv X.-J, Pei J.-P, Tan R, Liu Y.-K. Org. Chem. Front. 2020; 7: 292
    • 53c Peng C.-J, Pei J.-P, Chen Y.-H, Wu Z.-Y, Liu M, Liu Y.-K. Org. Chem. Front. 2021; 8: 4217
  • 54 Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
  • 55 Klausen RS, Kennedy CR, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
  • 56 Retini M, Bartoccini F, Zappia G, Piersanti G. Eur. J. Org. Chem. 2021; 825
  • 57 Odagi M, Araki H, Min C, Yamamoto E, Emge TJ, Yamanaka M, Seidel D. Eur. J. Org. Chem. 2019; 486
  • 58 Zhu Z, Odagi M, Zhao C, Abboud KA, Kirm HU, Saame J, Lõkov M, Leito I, Seidel D. Angew. Chem. Int. Ed. 2020; 59: 2028
  • 59 Mittal N, Sun DX, Seidel D. Org. Lett. 2014; 16: 1012
  • 60 Min C, Mittal N, Sun DX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 14084
  • 61 Min C, Lin C.-T, Seidel D. Angew. Chem. Int. Ed. 2015; 54: 6608
  • 62 Zhao C, Seidel D. J. Am. Chem. Soc. 2015; 137: 4650
  • 63 Zhu Z, Odagi M, Supantanapong N, Xu W, Saame J, Kirm H.-U, Abboud KA, Leito I, Seidel D. J. Am. Chem. Soc. 2020; 142: 15252
  • 64 Ning R, Zhou H, Nie S.-X, Ao Y.-F, Wang D.-X, Wang Q.-Q. Angew. Chem. Int. Ed. 2020; 59: 10894
  • 65 Furukawa Y, Suzuki R, Nakashima T, Gramage-Doria R, Ohmatsu K, Ooi T. Bull. Chem. Soc. Jpn. 2018; 91: 1252
  • 66 Kutateladze DA, Jacobsen EN. J. Am. Chem. Soc. 2021; 143: 20077
    • 67a Prins HJ. Chem. Weekblad 1919; 16: 1072
    • 67b Arundale E, Mikeska LA. Chem. Rev. 1952; 51: 505
  • 68 Banik SM, Levina A, Hyde AM, Jacobsen EN. Science 2017; 358: 761
  • 69 Wendlandt AE, Vangal P, Jacobsen EN. Nature 2018; 556: 447
  • 70 Metternich JB, Reiterer M, Jacobsen EN. Adv. Synth. Catal. 2020; 362: 4092
  • 71 Ronchi E, Paradine SM, Jacobsen EN. J. Am. Chem. Soc. 2021; 143: 7272
  • 72 Strassfeld DA, Wickens ZK, Picazo E, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 9175
  • 73 Strassfeld DA, Algera RF, Wickens ZK, Jacobsen EN. J. Am. Chem. Soc. 2021; 143: 9585
  • 74 Kumar V, Mukherjee S. Chem. Commun. 2013; 49: 11203
  • 75 Zhang H, Lin S, Jacobsen EN. J. Am. Chem. Soc. 2014; 136: 16485
  • 76 Fu GC. Acc. Chem. Res. 2000; 33: 412
  • 77 France S, Guerin DJ, Miller SJ, Lectka T. Chem. Rev. 2003; 103: 2985
  • 78 De cK, Klauber EG, Seidel D. J. Am. Chem. Soc. 2009; 131: 17060
  • 79 Mittal N, Lippert KM, De cK, Klauber EG, Emge TJ, Schreiner PR, Seidel D. J. Am. Chem. Soc. 2015; 137: 5748
    • 80a Klauber EG, De ck, Shah TK, Seidel D. J. Am. Chem. Soc. 2010; 132: 13624
    • 80b Klauber EG, Mittal N, Shah TK, Seidel D. Org. Lett. 2011; 13: 2464
    • 80c Mittal N, Sun DX, Seidel D. Org. Lett. 2012; 14: 3084
    • 80d Min C, Mittal N, De ck, Seidel D. Chem. Commun. 2012; 48: 10853
  • 81 De ck, Seidel D. J. Am. Chem. Soc. 2011; 133: 14538
  • 82 De CK, Mittal N, Seidel D. J. Am. Chem. Soc. 2011; 133: 16802
  • 83 Li Q.-H, Zhang G.-S, Wang Y.-H, Mei M.-S, Wang X, Liu Q, Yang X.-D, Tian P, Lin G.-Q. Org. Chem. Front. 2019; 6: 2624
  • 84 Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 8467
  • 85 Wen J, Tan R, Liu S, Zhao Q, Zhang X. Chem. Sci. 2016; 7: 3047
  • 86 Wen J, Fan X, Tan R, Chien H.-C, Zhou Q, Chung LW, Zhang X. Org. Lett. 2018; 20: 2143
  • 87 Han Z, Liu G, Wang R, Dong X.-Q, Zhang X. Chem. Sci. 2019; 10: 4328
  • 88 Yang T, Sun Y, Wang H, Lin Z, Wen J, Zhang X. Angew. Chem. Int. Ed. 2020; 59: 6108
  • 89 Guan Y, Attard JW, Visco MD, Fisher TJ, Mattson AE. Chem. Eur. J. 2018; 24: 7123
  • 90 Théveau L, Bellini R, Dydio P, Szabo Z, van der Werf A, Afshin Sander R, Reek JN. H, Moberg C. Organometallics 2016; 35: 1956

    • For general overviews on photoredox-catalysis, see:
    • 91a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 91b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 91c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 91d Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Chem. Rev. 2022; 122: 2907
    • 91e Lang X, Zhao J, Chen X. Chem. Soc. Rev. 2016; 45: 3026
  • 92 Bergonzini G, Schindler CS, Wallentin C.-J, Jacobsen EN, Stephenson CR. J. Chem. Sci. 2014; 5: 112
  • 93 Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
  • 94 Uraguchi D, Kimura Y, Ueoka F, Ooi T. J. Am. Chem. Soc. 2020; 142: 19462
  • 96 Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM. Angew. Chem. Int. Ed. 2002; 41: 3389
  • 97 Zhao Y, Domoto Y, Orentas E, Beuchat C, Emery D, Mareda J, Sakai N, Matile S. Angew. Chem. Int. Ed. 2013; 52: 9940
  • 98 Zhao Y, Cotelle Y, Avestro A.-J, Sakai N, Matile S. J. Am. Chem. Soc. 2015; 137: 11582
  • 99 Liu L, Cotelle Y, Avestro A.-J, Sakai N, Matile S. J. Am. Chem. Soc. 2016; 138: 7876
    • 100a Wang C, Miros FN, Mareda J, Sakai N, Matile S. Angew. Chem. Int. Ed. 2016; 55: 14422
    • 100b Akamatsu M, Matile S. Synlett 2016; 27: 1041
    • 100c Liu L, Cotelle Y, Klehr J, Sakai N, Ward TR, Matile S. Chem. Sci. 2017; 8: 3770
    • 100d Liu L, Matile S. Supramol. Chem. 2017; 29: 702
    • 100e Zhang X, Liu L, López-Andarias J, Wang C, Sakai N, Matile S. Helv. Chim. Acta 2018; 101: e1700288
  • 101 Liu L, Cotelle Y, Bornhof A.-B, Besnard C, Sakai N, Matile S. Angew. Chem. Int. Ed. 2017; 56: 13066
  • 102 Luo N, Ao Y.-F, Wang D.-X, Wang Q.-Q. Angew. Chem. Int. Ed. 2021; 60: 20650