Synlett 2022; 33(11): 1087-1091
DOI: 10.1055/a-1828-0352
letter

A Practical and Scalable Preparation of Lusianthridin

Qi Liao
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
b   The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Da-Yu Shi
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
c   School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Hao Xu
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Gui-Shan Zhang
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Cheng Huang
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
c   School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Guo-Qiang Lin
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Zhengtao Wang
b   The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
,
Yu-Hui Wang
a   The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. of China
› Institutsangaben
Financial support was generously provided by the National Natural Science Foundation of China (22001172, 22071155, and 21871184), the Shanghai Municipal Education Commission (2019-01-07-00-10-E00072), the Shanghai Sailing Program (20YF1449300), the Chenguang Program (20CG52), the Program of Shanghai Academic/Technology Research Leader (20XD1403600), the Science and Technology Commission of Shanghai Municipality (20400750300), and the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine. (ZYYCXTD-202004).


Abstract

The efficient preparation of the stilbenoid lusianthridin is described. This synthesis relies on a Suzuki–Miyaura coupling and an intramolecular nucleophilic substitution as key reactions to construct the 9,10-dihydrophenanthrene core. The synthesis is completed in seven steps with a 13.2% overall yield, and each step can be conducted on a >20 gram scale. The route has provided 20 grams of lusianthridin for further biological activity studies.

Supporting Information



Publikationsverlauf

Eingereicht: 18. März 2022

Angenommen nach Revision: 18. April 2022

Accepted Manuscript online:
18. April 2022

Artikel online veröffentlicht:
05. Mai 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Jiang F, Li M, Wang H, Ding B, Zhang C, Ding Z, Yu X, Lv G. Int. J. Mol. Sci. 2019; 20: 4422
    • 1b Lee C.-L, Chang F.-R, Yen M.-H, Yu D, Liu Y.-N, Bastow KF, Morris-Natschke SL, Wu Y.-C, Lee K.-H. J. Nat. Prod. 2009; 72: 210
    • 1c Cheng W, Lu J, Wang B, Sun L, Zhu B, Zhou F, Ding Z. Eur. J. Pharmacol. 2021; 896: 173931
    • 1d Tu Y, Huang J, Li Y. Med. Chem. Res. 2018; 27: 857
    • 2a Delia Greca M, Fiorentino A, Mangoni L, Molinaro A, Monaco P, Previtera L. Tetrahedron Lett. 1992; 33: 5257
    • 2b Miles DH, Bhattacharyya J, Mody NV, Atwood JL, Black S, Hedin PA. J. Am. Chem. Soc. 1977; 99: 618
    • 2c Boger DL, Mitscher LA, Mullican MD, Drake SD, Kitos P. J. Med. Chem. 1985; 28: 1543
    • 2d Wang X.-Y, Ke C.-Q, Tang C.-P, Yuan D, Ye Y. J. Nat. Prod. 2009; 72: 1209
    • 3a Boonjing S, Pothongsrisit S, Wattanathamsan O, Sritularak B, Pongrakhananon V. Planta Med. 2021; 87: 283
    • 3b Ren J, Fan C, Guo Y.-G, Yan S.-K, Ye RD, Zhang Y, Jin H.-Z, Zhang W.-D. Tetrahedron 2017; 73: 1611
    • 3c Estrada S, López-Guerrero JJ, Villalobos-Molina R, Mata R. Fitoterapia 2004; 75: 690
  • 4 Yang X, Tang C, Zhao P, Shu G, Mei Z. Planta Med. 2012; 78: 606
    • 5a Takagi S, Yamaki M, Inoue K. Phytochemistry 1983; 22: 1011
    • 5b Majumder PL, Lahiri S. Phytochemistry 1990; 29: 621
    • 6a Jiang S, Wang M, Jiang L, Xie Q, Yuan H, Yang Y, Zafar S, Liu Y, Jian Y, Li B, Wang W. J. Ethnopharmacol. 2021; 280: 114263
    • 6b He X, Wang X, Fang J, Zhao Z, Huang L, Guo H, Zheng X. J. Ethnopharmacol. 2017; 195: 20
  • 7 Sukphan P, Sritularak B, Mekboonsonglarp W, Lipipun V, Likhitwitayawuid K. Nat. Prod. Commun. 2014; 9: 825
    • 8a Tezuka Y, Yoshida Y, Kikuchi T, Xu G.-J. Chem. Pharm. Bull. 1993; 41: 1346
    • 8b Teixeira da Silva JA, Ng TB. Appl. Microbiol. Biotechnol. 2017; 101: 2227
  • 9 Yao S, Tang C.-P, Li X.-Q, Ye Y. Helv. Chim. Acta 2008; 91: 2122
  • 10 Dong H, Liang H, Wang C, Guo S, Yang J.-S. Magn. Reson. Chem. 2013; 51: 371
    • 11a Thant SW, Morales NP, Buranasudja V, Sritularak B, Luechapudiporn R. Pharmaceuticals 2021; 14: 567
    • 11b Choonong R, Sermpradit W, Kitisripanya T, Sritularak B, Putalun W. ScienceAsia 2019; 45: 245
    • 11c Guo X.-Y, Wang J, Wang N.-L, Kitanaka S, Yao X.-S. J. Asian Nat. Prod. Res. 2007; 9: 165
  • 12 Swe HN, Sritularak B, Rojnuckarin P, Luechapudiporn R. Int. J. Mol. Sci. 2021; 22: 6846
    • 13a Bhummaphan N, Petpiroon N, Prakhongcheep O, Sritularak B, Chanvorachote P. Phytomedicine 2019; 62: 152932
    • 13b Wu Y.-P, Liu W.-J, Zhong W.-J, Chen Y.-J, Chen D.-N, He F, Jiang L. Nat. Prod. Res. 2017; 31: 1518
    • 13c Lee YH, Park JD, Baek NI, Kim SI, Ahn BZ. Planta Med. 1995; 61: 178
  • 14 Yang H, Sung SH, Kim YC. J. Nat. Prod. 2007; 70: 1925
  • 15 Barron DM, Ratinaud Y, Sakamoto K, Sanders M, Willows R. WO 2019228794, 2019
    • 16a Gunter MJ, Mander LN. Aust. J. Chem. 1981; 34: 675
    • 16b Krautwurst K.-D, Tochtermann W. Chem. Ber. 1981; 114: 214
    • 16c Hardegger E, Schellenbaum M, Corrodi H. Helv. Chim. Acta 1963; 46: 1171
    • 16d Steiner K, Egli C, Rigassi N, Helali SE, Hardegger E. Helv. Chim. Acta 1974; 57: 1137
    • 16e Banerjee AK, Castillo-Meléndez JA, Vera W, Azócar JA, Laya MS. J. Chem. Res. 2000; 324
    • 16f Broering TJ, Morrow GW. Synth. Commun. 1999; 29: 1135
  • 17 Rinsch CL, Blanco-Bose W, Schneider B, Mouchiroud L, Ryu D, Andreux P, Auwerx J. WO 2014004902, 2014
    • 18a Hemelaere R, Carreaux F, Carboni B. Eur. J. Org. Chem. 2015; 2470
    • 18b Costello JP, Ferreira EM. Org. Lett. 2019; 21: 9934
    • 18c Kitching MO, Hurst TE, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 2925
  • 19 CCDC 2151078 and 2141695 contain the supplementary crystallographic data for compounds 14 and 1, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
  • 20 Sheng W, Wang Z, Hao E, Jiao L. Chin. Chem. Lett. 2021; 32: 1249
  • 21 Hewgill FR, Slamet R, Stewart JM. J. Chem. Soc., Perkin Trans. 1 1991; 1991: 3033
    • 22a Takimiya K, Ohnishi A, Aso Y, Otsubo T, Ogura F. J. Chem. Soc., Chem. Commun. 1992; 1992: 278
    • 22b Bergmann ED, Pelchowicz Z. J. Am. Chem. Soc. 1953; 75: 2663
    • 22c Karnes HA, Kybett BD, Wilson MH, Margrave JL, Newman MS. J. Am. Chem. Soc. 1965; 87: 5554
    • 22d Mislow K, Graeve R, Gordon AJ, Wahl GH. J. Am. Chem. Soc. 1964; 86: 1733
    • 23a Ju Z, Tang X, Liao Q, Guan H, Yang L, Wang Z. J. Pharm. Biomed. Anal. 2021; 195: 113836
    • 23b Ju Z, Liao Q, Yang Y, Guan H, Ma C, Tang X, Yang L, Wang Z. Biomed. Chromatogr. 2021; 35: e5001
  • 24 Lusianthridin (1)6b After two vacuum/N2 cycles to replace air inside the reaction tube, a mixture of compound 20 (118.0 mmol, 1.0 equiv) and 10% Pd/C (5.0 g) in MeOH (50 mL) was vigorously stirred at r.t. under 1 atm of H2 for 12 h. Upon full consumption of 20, the mixture was filtered through Celite, and the filtrate was concentrated in vacuo and redissolved in CH2Cl2. The solution was stirred and mixed with hexane to afford a white precipitate that was collected by filtration to give a white solid; yield: 20 g (73%). 1H NMR (600 MHz, CD3OD): δ = 8.19–8.11 (m, 1 H), 6.66–6.56 (m, 2 H), 6.33 (s, 2 H), 3.75 (s, 3 H), 2.74–2.60 (m, 4 H). 13C NMR (150 MHz, CD3OD): δ = 159.8, 156.4, 156.0, 141.8, 140.3, 130.1, 126.5, 116.2, 115.0, 113.6, 106.0, 101.4, 55.5, 31.9, 31.2. HRMS (ESI): m/z [M + H]+ calcd for C15H15O3: 243.1016; found: 243.1017.