Synthesis 2022; 54(18): 3962-3976
DOI: 10.1055/a-1794-0770
feature

Facile Access to Spiro[4.5]decanes through Oxidative Dearomatization-Induced Ring Expansion of Cyclobutanes

Shuang Xi
,
Jingyang Zhang
,
Zhen Guo
,
Yumeng Zu
,
Yang Liu
,
Gelin Wang
,
Yefeng Tang
We acknowledge the financial support from the National Natural Science Foundation of China (21971140), the Tsinghua University Spring Breeze Fund (2021Z99CFY015), and the Beijing Natural Science Foundation (M21011).


Abstract

A mechanistically interesting and practical method for the synthesis of functionalized spiro[4.5]decanes is developed, featuring oxidative dearomatization-induced ring expansion of cyclobutanes as the key element. The new method enables facile access to a variety of spiro[4.5]cyclohexadienones with good efficiency and generality. Further elaboration of the resulting products into other valuable scaffolds is also explored, leading to the discovery of an interesting compound that displays a promising biological profile. Moreover, we have also conducted a comprehensive computational study that provides a deep insight into the mechanism of the reaction.

Supporting Information



Publication History

Received: 12 February 2022

Accepted after revision: 10 March 2022

Accepted Manuscript online:
10 March 2022

Article published online:
03 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For leading reviews on spirocarbocycles, see:
    • 1a Sannigrahi M. Tetrahedron 1999; 55: 9007
    • 1b Pradhan R, Patra M, Behera AK, Mishra BK, Behera RK. Tetrahedron 2006; 62: 779
    • 1c Ramon R. Chem. Soc. Rev. 2012; 41: 1060
    • 1d D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
    • 1e Reddy CR, Prajapti SK, Warudikar K, Ranjana R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130

      For a relevant book chapter, see:
    • 2a Marshall JA, Brady SF, Andersen NH. The Chemistry of Spiro[4.5]Decane Sesquiterpenes . In Progress in the Chemistry of Organic Natural Products, Vol. 31. Herz W, Grisebach H, Kirby GW. Springer-Verlag; Wien: 1974: 283

    • For the selected examples listed in Figure [1], see
    • 2b Marshall JA, Johnson PC. J. Org. Chem. 1970; 35: 192
    • 2c Barrow CJ, Blunt JW, Munro MH. G. Aust. J. Chem. 1988; 41: 1755
    • 2d Bernauer K. Helv. Chim. Acta 1964; 47: 2122
    • 2e Park HB, Kim Y.-J, Lee JK, Lee KR, Kwon HC. Org. Lett. 2012; 14: 5002
    • 2f Stork G, Clarke FH. J. Am. Chem. Soc. 1961; 83: 3114
    • 2g Kotha S, Mandal K. Tetrahedron Lett. 2004; 45: 1391

      For selected examples, see:
    • 3a Buchi G, Berthet D, Decorzant R, Grieder A, Hauser A. J. Org. Chem. 1976; 41: 3208
    • 3b Kido F, Abiko T, Kato MJ. J. Chem. Soc., Perkin Trans. 2 1992; 229
    • 3c Maulide N, Vanherck J.-C, Markó IE. Eur. J. Org. Chem. 2004; 19: 3962
    • 3d Kuroda C, Honda S, Nagura Y. Tetrahedron 2004; 60: 319
    • 3e Inui M, Nakazaki N, Kobayashi S. Org. Lett. 2007; 9: 469
    • 3f Rousseaux S, García-Fortanet J, Sanchez MA. D. A, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
    • 3g Yoshida M, Nemoto T, Zhao Z, Ishige Y, Hamada Y. Tetrahedron: Asymmetry 2012; 23: 859
    • 3h Unsworth WP, Cuthbertson JD, Taylor RJ. K. Org. Lett. 2013; 15: 3306
    • 3i Nemoto T, Zhao Z, Yokosaka T, Suzuki Y, Wu R, Hamada Y. Angew. Chem. Int. Ed. 2013; 52: 2217
    • 3j Su B, Deng M, Wang Q. Org. Lett. 2013; 15: 1606
    • 3k Bai Y, Liu A, Wu XX, Chen S, Wang J. J. Org. Chem. 2020; 85: 6687
    • 4a Marx J, Norman LR. J. Org. Chem. 1975; 40: 1602
    • 4b Hoye RT, Martin SJ, Peck DR. J. Org. Chem. 1982; 47: 331
    • 4c Canonne P, Boulanger R, Angers P. Tetrahedron Lett. 1991; 32: 5861
    • 4d Pages L, Llebaria A, Camps F, Molins E, Miravitlles C, Moreto JM. J. Am. Chem. Soc. 1992; 114: 10449
    • 4e Knolker H.-J, Jones PG, Graf R. Synlett 1996; 1155
    • 4f Nan J, Zuo Z, Luo L, Bai L, Zheng H, Yuan Y, Liu J, Luan X, Wang Y. J. Am. Chem. Soc. 2013; 135: 17306
    • 4g Wang Y, Wang Z, Chen X, Tang Y. Org. Chem. Front. 2018; 5: 2815
    • 4h Peng S, Sun Z, Zhu H, Chen N, Sun X, Gong X, Wang J, Wang L. Org. Lett. 2020; 22: 3200
    • 4i Wu JY, Bai L, Han LB, Liu JJ, Luan XJ. Chem. Commun. 2021; 57: 1117

      For selected examples, see:
    • 5a Shimada J, Hashimoto K, Kim BH, Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1984; 106: 1759
    • 5b Wu Y.-J, Zhu Y.-Y, Burnell DJ. J. Org. Chem. 1994; 59: 104
    • 5c Bumell DJ, Crane SN. J. Org. Chem. 1998; 63: 5708
    • 5d Zhang E, Fan C.-A, Tu Y.-Q, Zhang F.-M, Song Y.-L. J. Am. Chem. Soc. 2009; 131: 14626
  • 6 For the original report on the isolation of dragonbloodins A1 and A2, see: (it should be noted that this paper was retracted on June 7, 2016) Du W, Hung H, Kuo P, Hwang T, Shiu L, Shiu K, Lee E, Tai S, Wu T. Org. Lett. 2016; 18: 3042
  • 8 Guo Z., Ph.D. Thesis 2020

    • For excellent reviews on the ring-expansion reactions of cyclobutylmethylcarbenium ions, see:
    • 9a Leemans E, D’hooghe M, De Kimpe N. Chem. Rev. 2011; 111: 3268
    • 9b Seiser T, Saget T, Tran DN. Angew. Chem. Int. Ed. 2011; 50: 7740

    • For some cases that inspired this study, see:
    • 9c Do Khac Manh D, Fetizon M, Flament JP. Tetrahedron 1975; 31: 1897
    • 9d Pirrung MC. J. Am. Chem. Soc. 1979; 101: 7130
    • 9e Takeda K, Shimono Y, Yoshii E. J. Am. Chem. Soc. 1983; 105: 563
    • 9f Abe K, Okumura H, Tsugoshi T, Nakamura N. Synthesis 1984; 603
  • 10 Fujioka H, Komatsu H, Nakamura T, Miyoshi A, Hata K, Ganesh J, Muraia K, Kita Y. Chem. Commun. 2010; 46: 4133
  • 11 Guérard KC, Chapelle C, Giroux M, Sabot C, Beaulieu M, Achache N, Canesi S. Org. Lett. 2009; 11: 4756
    • 13a Meguro H, Takagaki K, Kaino M, Maruyama T, Suzuki H, Okumura M. JP2012211086, 2012
    • 13b G-Dayanandan N, Scocchera EW, Keshipeddy S, Jones HF, Anderson AC, Wright DL. Org. Lett. 2016; 19: 142
    • 14a Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 119: 215
    • 14b Weigend F, Reinhart A. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 15 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. 16, Revision C.01. Gaussian Inc; Wallingford (CT, USA): 2016
  • 16 Ganji B, Ariafard A. Org. Biomol. Chem. 2019; 17: 3521
    • 17a Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 1
    • 17b Bégué J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18

      For excellent reviews on the application of hypervalent iodine reagents, see:
    • 18a Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 18b Kita Y, Takada T, Tohma H. Pure Appl. Chem. 1996; 68: 627
  • 19 Hammill JT, Contreras-García J, Virshup AM, Beratan DN, Yang W, Wipf P. Tetrahedron 2010; 66: 5852
  • 20 CCDC 2155602 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 21a Moisan L, Wagner M, Comesse S, Doris E. Tetrahedron Lett. 2006; 47: 9093
    • 21b Singh RP, Das J, Yousufuddin M, Gout D, Lovely CJ. Org. Lett. 2017; 19: 4110
  • 22 Purification of Laboratory Chemicals . Perrin DD, Armarego WL, Perrins DR. Pergamon Press; Oxford: 1980