Synthesis 2022; 54(14): 3142-3161
DOI: 10.1055/a-1792-6579
short review

Recent Advances to Mediate Reductive Processes of Nitroarenes Using Single-Electron Transfer, Organomagnesium, or Organozinc Reagents

Haoran Zhu
,
Tom G. Driver
We are grateful to National Institutes of Health (NIGMS) (R01GM138388) for generous financial support.


Abstract

Nitroarenes are readily available compounds that are commonly utilized in reductive processes to form C–NAr bonds via reactive nitrogen intermediates. Recent advances in the development of reductive reactions of nitroarenes using organomagnesium, organozinc, and single-electron transfer reagents are discussed within this short review.

1 Introduction

2 Organomagnesium-Mediated Reductive Reactions of Nitroarenes

3 Organozinc- and Zinc-Mediated Reductive Reactions of Nitroarenes

4 Iodine-Catalyzed Redox Cyclizations of Nitroarenes

5 Titanium(III)-Mediated Reductive Cyclizations

6 Sulfur-Mediated Reductive Reactions of Nitroarenes

7 Alkoxide-Mediated Reductive Reactions of Nitroarenes

8 4,4′-Bipyridine-Mediated Reductive Reactions of Nitroarenes

9 Visible-Light-Driven Reductive Amination Reactions

10 Electrochemical Reductive Reactions

11 Conclusion



Publication History

Received: 01 February 2022

Accepted after revision: 09 March 2022

Accepted Manuscript online:
09 March 2022

Article published online:
30 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Schofield K. Aromatic Nitration . Cambridge University Press; Cambridge: 1981
    • 1b Olah GA, Malhotra R, Narang SC. Nitration: Methods and Mechanisms . Wiley-VCH; New York: 1989
    • 1c Ono N. In The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2001: 3
    • 2a Salzbrunn S, Simon J, Surya Prakash GK, Petasis NA, Olah GA. Synlett 2000; 1485
    • 2b Prakash GK. S, Panja C, Mathew T, Surampudi V, Petasis NA, Olah GA. Org. Lett. 2004; 6: 2205
    • 2c Saito S, Koizumi Y. Tetrahedron Lett. 2005; 46: 4715
    • 2d Fors BP, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 12898
  • 3 Yan G, Yang M. Org. Biomol. Chem. 2013; 11: 2554
    • 4a Burnett JF, Zahler RE. Chem. Rev. 1951; 49: 273
    • 4b Terrier F. Modern Nucleophilic Aromatic Substitution . Wiley-VCH; Weinheim: 2013
    • 4c Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
    • 7a Cadogan JI. G, Cameron-Wood M. Proc. Chem. Soc. 1962; 361
    • 7b Cadogan JI. G, Cameron-Wood M, Mackie RK, Searle RJ. G. J. Chem. Soc. 1965; 4831
    • 7c Sundberg RJ. Tetrahedron Lett. 1966; 7: 477
    • 7d Sundberg RJ. J. Am. Chem. Soc. 1966; 88: 3781
    • 7e Sundberg RJ, Yamazaki T. J. Org. Chem. 1967; 32: 290
    • 7f Sundberg RJ, Kotchmar GS. J. Org. Chem. 1969; 34: 2285
    • 7g Cadogan JI. G, Kulik S, Todd MJ. Chem. Commun. 1968; 736
    • 7h Cadogan JI. G. Acc. Chem. Res. 1972; 5: 303
    • 7i Cadogan JI. G, Mackie RK. Chem. Soc. Rev. 1974; 3: 87

      For recent light-mediated Cadogan-type cyclizations, see:
    • 8a Qu Z, Wang P, Chen X, Deng G.-J, Huang H. Chin. Chem. Lett. 2021; 32: 2582
    • 8b Qu Z, Chen X, Zhong S, Deng G.-J, Huang H. Org. Lett. 2021; 23: 5349
    • 9a Nykaza TV, Harrison TS, Ghosh A, Putnik RA, Radosevich AT. J. Am. Chem. Soc. 2017; 139: 6839
    • 9b Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103
  • 10 Akazome M, Kondo T, Watanabe Y. J. Org. Chem. 1994; 59: 3375

    • For characterization of palladacycle intermediates in carbonylation reactions, see:
    • 11a Leconte P, Metz F, Mortreux A, Osborn JA, Paul F, Petit F, Pillot A. J. Chem. Soc., Chem. Commun. 1990; 1616
    • 11b Paul F, Osborn JA, Fischer J, Ochsenbein P. Angew. Chem., Int. Ed. Engl. 1993; 32: 1638
    • 11c Paul F, Fischer J, Ochsenbein P, Osborn JA. Organometallics 1998; 17: 2199
    • 12a Söderberg BC, Shriver JA. J. Org. Chem. 1997; 62: 5838
    • 12b Söderberg BC. G, Wallace JM, Tamariz J. Org. Lett. 2002; 4: 1339
    • 12c Dantale SW, Söderberg BC. G. Tetrahedron 2003; 59: 5507
    • 12d Söderberg BC. G, Gorugantula SP, Howerton CR, Petersen JL, Dantale SW. Tetrahedron 2009; 65: 7357
    • 12e Zhang Y, Hubbard JW, Akhmedov NG, Petersen JL, Söderberg BC. G. J. Org. Chem. 2015; 80: 4783
    • 12f Ansari NH, Dacko CA, Akhmedov NG, Söderberg BC. G. J. Org. Chem. 2016; 81: 9337

      Compare:
    • 13a Ragaini F, Sportiello P, Cenini S. J. Organomet. Chem. 1999; 577: 283
    • 13b Ragaini F, Cenini S, Brignoli D, Gasperini M, Gallo E. J. Org. Chem. 2003; 68: 460
  • 14 Tollari S, Cenini S, Crotti C, Gianella E. J. Mol. Catal. 1994; 87: 203
    • 15a Smitrovich JH, Davies IW. Org. Lett. 2004; 6: 533
    • 15b Davies IW, Guner VA, Houk KN. Org. Lett. 2004; 6: 743
    • 15c Leach AG, Houk KN, Davies IW. Synthesis 2005; 3463
    • 15d Davies IW, Smitrovich JH, Sidler R, Qu C, Gresham V, Bazaral C. Tetrahedron 2005; 61: 6425

      Compare:
    • 16a Knölker H.-J, O’Sullivan N. Tetrahedron 1994; 50: 10893
    • 16b Knölker H.-J, O’Sullivan N. Tetrahedron Lett. 1994; 35: 1695
    • 16c Knölker H.-J, Frönher W. J. Chem. Soc., Perkin Trans. 1 1998; 173
    • 16d Knölker H.-J. Chem. Soc. Rev. 1999; 28: 151
    • 16e Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 16f Knölker H.-J, Knöll J. Chem. Commun. 2003; 1170
    • 16g Knölker H.-J. Top. Curr. Chem. 2005; 244: 115
    • 16h Knölker H.-J, Agarwal S. Tetrahedron Lett. 2005; 46: 1173
    • 16i Czerwonka R, Reddy KR, Baum E, Knölker H.-J. Chem. Commun. 2006; 711
    • 16j Krahl MP, Jäger A, Krause T, Knölker H.-J. Org. Biomol. Chem. 2006; 4: 3215
    • 16k Knölker H.-J. Chem. Lett. 2009; 38: 8
    • 16l Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
  • 17 Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
  • 18 Xiao J, He Y, Ye F, Zhu S. Chem 2018; 4: 1645
  • 19 Zhu K, Shaver MP, Thomas SP. Chem. Sci. 2016; 7: 3031
    • 20a Shevlin M, Guan X, Driver TG. ACS Catal. 2017; 5518
    • 20b Song H, Yang Z, Tung C.-H, Wang W. ACS Catal. 2020; 10: 276

      Compare:
    • 21a Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
    • 21b Cabrero-Antonino JR, Adam R, Beller M. Angew. Chem. Int. Ed. 2019; 58: 12820
    • 21c Ferretti F, Ramadan DR, Ragaini F. ChemCatChem 2019; 11: 4450
    • 21d Formenti D, Ferretti F, Scharnagl FK, Beller M. Chem. Rev. 2019; 119: 2611
    • 21e Gao Y, Yang S, Huo Y, Hu X.-Q. Adv. Synth. Catal. 2020; 362: 3971
    • 21f Li G, te Grotenhuis C, Radosevich AT. Trends Chem. 2021; 3: 72

      For recent complementary reviews, see:
    • 22a Georgiades SN, Nicolaou PG. In Advanced Heterocyclic Chemistry, Vol. 129. Scriven EF. V, Ramsden CA. Academic Press; Cambridge: 2019
    • 22b Chen J.-Q, Dong Z.-B. Synthesis 2020; 52: 3714
    • 22c Huang J, Ding F, Rojsitthisak P, He F.-S, Wu J. Org. Chem. Front. 2020; 7: 2873
    • 22d Gao Y, Yang S, Xiao W, Nie J, Hu X.-Q. Chem. Commun. 2020; 56: 13719
    • 22e Suárez-Pantiga S, Sanz R. Org. Biomol. Chem. 2021; 19: 10472
    • 23a Bartoli G, Palmieri G, Bosco M, Dalpozzo R. Tetrahedron Lett. 1989; 30: 2129
    • 23b Bartoli G, Bosco M, Dalpozzo R, Palmieri G, Marcantoni E. J. Chem. Soc., Perkin Trans. 1 1991; 2757
    • 23c Dalpozzo R, Bartoli G. Curr. Org. Chem. 2005; 9: 163
  • 24 Bosco M, Dalpozzo R, Bartoli G, Palmieri G, Petrini M. J. Chem. Soc., Perkin Trans. 2 1991; 657
  • 25 Gao H, Xu Q.-L, Yousufuddin M, Ess DH, Kürti L. Angew. Chem. Int. Ed. 2014; 53: 2701
  • 26 Xu Q.-L, Gao H, Yousufuddin M, Ess DH, Kürti L. J. Am. Chem. Soc. 2013; 135: 14048
  • 27 Dhayalan V, Sämann C, Knochel P. Chem. Commun. 2015; 51: 3239
  • 28 Sapountzis I, Knochel P. J. Am. Chem. Soc. 2002; 124: 9390
    • 29a Rauser M, Ascheberg C, Niggemann M. Angew. Chem. Int. Ed. 2017; 56: 11570
    • 29b Rauser M, Ascheberg C, Niggemann M. Chem. Eur. J. 2018; 24: 3970
    • 30a Bolm C, Rudolph J. J. Am. Chem. Soc. 2002; 124: 14850
    • 30b Jimeno C, Sayalero S, Fjermestad T, Colet G, Maseras F, Pericàs MA. Angew. Chem. Int. Ed. 2008; 47: 1098
    • 30c Bedford RB, Gower NJ, Haddow MF, Harvey JN, Nunn J, Okopie RA, Sankey RF. Angew. Chem. Int. Ed. 2012; 51: 5435
  • 31 Rauser M, Warzecha DP, Niggemann M. Angew. Chem. Int. Ed. 2018; 57: 5903
  • 32 Reissert A. Ber. Dtsch. Chem. Ges. 1897; 30: 1030
    • 33a Elks J, Elliott DF, Hems BA. J. Chem. Soc. 1944; 629
    • 33b Uhle FC. J. Am. Chem. Soc. 1949; 71: 761
    • 34a Noland WE, Baude FJ. Org. Synth. 1963; 43: 40
    • 34b Frydman B, Despuy ME, Rapoport H. J. Am. Chem. Soc. 1965; 87: 3530
  • 35 Colombo E, Ratel P, Mounier L, Guillier F. J. Flow Chem. 2011; 1: 68
  • 36 Cheung CW, Ploeger ML, Hu X. Nat. Commun. 2017; 8: 14878
  • 37 Cheung CW, Hu X. Nat. Commun. 2016; 7: 12494
  • 38 Pu X, Hu J, Zhao Y, Shi Z. ACS Catal. 2016; 6: 6692
  • 39 Hie L, Fine Nathel NF, Hong X, Yang Y.-F, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810

    • For related studies on the cleavage of N=N bonds by an iron complex, see:
    • 40a Smith JM, Lachicotte RJ, Holland PL. J. Am. Chem. Soc. 2003; 125: 15752
    • 40b Sadique AR, Gregory EA, Brennessel WW, Holland PL. J. Am. Chem. Soc. 2007; 129: 8112
    • 40c Bellows SM, Arnet NA, Gurubasavaraj PM, Brennessel WW, Bill E, Cundari TR, Holland PL. J. Am. Chem. Soc. 2016; 138: 12112
    • 41a Cheung CW, Ploeger ML, Hu X. ACS Catal. 2017; 7: 7092
    • 41b Dander JE, Baker Emma L, Garg NK. Chem. Sci. 2017; 8: 6433
  • 42 Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
  • 43 Cheung CW, Ma J.-A, Hu X. J. Am. Chem. Soc. 2018; 140: 6789
    • 44a Hoerter JM, Otte KM, Gellman SH, Cui Q, Stahl SS. J. Am. Chem. Soc. 2008; 130: 647
    • 44b Stephenson NA, Zhu J, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2009; 131: 10003
  • 45 Nguyen TB, Ermolenko L, Al-Mourabit A. Green Chem. 2016; 18: 2966
  • 46 Iwama T, Birman VB, Kozmin SA, Rawal VH. Org. Lett. 1999; 1: 673
  • 47 Kozmin SA, Iwama T, Huang Y, Rawal VH. J. Am. Chem. Soc. 2002; 124: 4628
  • 48 Ren W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2014; 53: 1818
  • 49 Tong S, Xu Z, Mamboury M, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 11809
  • 50 Delayre B, Piemontesi C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2020; 59: 13990
  • 51 Harley-Mason J, Kaplan M. Chem. Commun. 1967; 915
  • 52 Jana N, Zhou F, Driver TG. J. Am. Chem. Soc. 2015; 137: 6738
  • 53 Nguyen TB, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 15: 4218
  • 54 Yoshifuji M, Nagase R, Kawashima T, Inamoto N. Bull. Chem. Soc. Jpn. 1982; 55: 870
  • 55 Emmert B, Holz A. Chem. Ber. 1954; 87: 676
  • 56 Pham HT, Ho TH, Do DQ, Nguyen KL. H, Nguyen TT, Phan NT. S. Synlett 2020; 31: 1813
  • 57 Do NT, Tran KM, Phan HT, To TA, Nguyen TT, Phan NT. S. Org. Biomol. Chem. 2019; 17: 8987
    • 58a Zinin N. J. Prakt. Chem. 1845; 36: 93
    • 58b Klinger H. Ber. Dtsch. Chem. Ges. 1882; 15: 865
  • 59 Lachman A. J. Am. Chem. Soc. 1902; 24: 1178
  • 60 Fry HS, Cameron JL. J. Am. Chem. Soc. 1927; 49: 864
  • 61 Ogata Y, Mibae J. J. Org. Chem. 1962; 27: 2048
  • 62 Russell GA, Janzen EG. J. Am. Chem. Soc. 1962; 84: 4153
  • 63 Russell GA, Geels EJ, Smentowski FJ, Chang K.-Y, Reynolds J, Kaupp G. J. Am. Chem. Soc. 1967; 89: 3821
    • 64a Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
    • 64b Shirakawa E, Itoh K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 64c Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 64d Roman DS, Takahashi Y, Charette AB. Org. Lett. 2011; 13: 3242
    • 64e Chang W.-W, Li Z.-J, Yang W.-W, Gao X. Org. Lett. 2012; 14: 2386
    • 64f Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem. Sci. 2014; 5: 476
    • 64g Toutov AA, Liu W.-B, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Nature 2015; 518: 80
    • 64h Barham JP, Coulthard G, Kane RG, Delgado N, John MP, Murphy JA. Angew. Chem. Int. Ed. 2016; 55: 4492
    • 64i Smith AJ, Young A, Rohrbach S, O’Connor EF, Allison M, Wang H.-S, Poole DL, Tuttle T, Murphy JA. Angew. Chem. Int. Ed. 2017; 56: 13747
    • 64j Cumine F, Palumbo F, Murphy JA. Tetrahedron 2018; 74: 5539
    • 64k Wu L, Annibale VT, Jiao H, Brookfield A, Collison D, Manners I. Nat. Commun. 2019; 10: 2786
    • 64l Xu Y, Shi X, Wu L. RCS Adv. 2019; 9: 24025

      For reviews of HAS, see:
    • 65a Bolton R, Williams GH. Chem. Soc. Rev. 1986; 15: 261
    • 65b Bowman WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
    • 65c Gurry M, Aldabbagh F. Org. Biomol. Chem. 2016; 14: 3849
    • 66a Murphy JA, Khan TA, Zhou S.-z, Thomson DW, Mahesh M. Angew. Chem. Int. Ed. 2005; 44: 1356
    • 66b Murphy JA, Zhou S.-z, Thomson DW, Schoenebeck F, Mahesh M, Park SR, Tuttle T, Berlouis LE. A. Angew. Chem. Int. Ed. 2007; 46: 5178
    • 66c Jolly PI, Zhou S, Thomson DW, Garnier J, Parkinson JA, Tuttle T, Murphy JA. Chem. Sci. 2012; 3: 1675
    • 66d Doni E, O’Sullivan S, Murphy JA. Angew. Chem. Int. Ed. 2013; 52: 2239
  • 67 Lin Z, Hu Z, Zhang X, Dong J, Liu J.-B, Chen D.-Z, Xu X. Org. Lett. 2017; 19: 5284
    • 68a DePuy CH, King RW. Chem. Rev. 1960; 60: 431
    • 68b Cooper NJ, Knight DW. Tetrahedron 2004; 60: 243
  • 69 Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Angew. Chem. Int. Ed. 2021; 60: 19207
    • 70a Zhou F, Wang D.-S, Driver TG. Adv. Synth. Catal. 2015; 357: 3463
    • 70b Zhou F, Wang D.-S, Guan X, Driver TG. Angew. Chem. Int. Ed. 2017; 56: 4530
    • 70c Guan X, Zhu H, Zhao Y, Driver TG. Eur. J. Org. Chem. 2020; 57
    • 71a Ohkita T, Tsuchiya Y, Togo H. Tetrahedron 2008; 64: 7247
    • 71b Tsuchiya Y, Izumisawa Y, Togo H. Tetrahedron 2009; 65: 7533

      For ring-opening reactions of epoxides by nitrates, see:
    • 72a Golding P, Millar RW, Paul NC, Richards DH. Tetrahedron Lett. 1988; 29: 2731
    • 72b Golding P, Millar RW, Paul NC, Richards DH. Tetrahedron 1993; 49: 7051
    • 72c Iranpoor N, Salehi P. Tetrahedron 1995; 51: 909
    • 72d Volkova YA, Ivanova OA, Budynina EM, Averina EB, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2008; 49: 3935

      For reports of related cyclic nitrites as reactive intermediates, see:
    • 73a Walker JW, Reid GP, McCray JA, Trentham DR. J. Am. Chem. Soc. 1988; 110: 7170
    • 73b Ohwada T, Kasuga M, Shudo K. J. Org. Chem. 1990; 55: 2717
    • 73c Corrie JE. T, Gilbert BC, Munasinghe VR. N, Whitwood AC. J. Chem. Soc., Perkin Trans. 2 2000; 2483
    • 73d Abbruzzetti S, Sottini S, Viappiani C, Corrie JE. T. J. Am. Chem. Soc. 2005; 127: 9865

      For leading reports on the fragmentation of the N–O bond in nitrite esters, see:
    • 74a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 74b Barton DH. R. Pure Appl. Chem. 1968; 16: 1

      For related α-H-atom abstraction of alkoxy radicals to form ketones, see:
    • 75a Barton DH. R, Hesse RH, Pechet MM, Smith LC. J. Chem. Soc., Perkin Trans. 1 1979; 1159
    • 75b Ishmuratov GY, Kharisov RY, Shayakhmetova AK, Botsman LP, Shitikova OV, Tolstikov GA. Chem. Nat. Compd. 2005; 41: 643

      For base-mediated [1,2] shifts, see:
    • 76a Acheson RM, Booth SR. G. J. Chem. Soc. C 1968; 30
    • 76b Kafka S, Klásek A, Košmrlj J. J. Org. Chem. 2001; 66: 6394
    • 76c Coldham I, Adams H, Ashweek NJ, Barker TA, Reeder AT, Skilbeck MC. Tetrahedron Lett. 2010; 51: 2457
    • 76d Liu M, Zhang C, Ding M, Tang B, Zhang F. Green Chem. 2017; 19: 4509
  • 77 Bhattacharjee A, Hosoya H, Ikeda H, Nishi K, Tsurugi H, Mashima K. Chem. Eur. J. 2018; 24: 11278
    • 78a Saito T, Nishiyama H, Tanahashi H, Kawakita K, Tsurugi H, Mashima K. J. Am. Chem. Soc. 2014; 136: 5161
    • 78b Yurino T, Ueda Y, Shimizu Y, Tanaka S, Nishiyama H, Tsurugi H, Sato K, Mashima K. Angew. Chem. Int. Ed. 2015; 54: 14437
    • 78c Rej S, Pramanik S, Tsurugi H, Mashima K. Chem. Commun. 2017; 53: 13157
    • 78d Pramanik S, Rej S, Kando S, Tsurugi H, Mashima K. J. Org. Chem. 2018; 83: 2409
  • 79 Hosoya H, Misal Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. Org. Lett. 2019; 21: 9812
  • 80 Qi J.-Q, Jiao L. J. Org. Chem. 2020; 85: 13877
  • 81 Lin W.-C, Yang D.-Y. Org. Lett. 2013; 15: 4862
  • 82 Lu C, Su Z, Jing D, Jin S, Xie L, Li L, Zheng K. Org. Lett. 2019; 21: 1438

    • Compare:
    • 83a Fielden R, Meth-Cohn O, Suschitzky H. Tetrahedron Lett. 1970; 11: 1229
    • 83b Wong PT, Choi SK. Chem. Rev. 2015; 115: 3388
    • 83c Wong PT, Tang S, Mukherjee J, Tang K, Gam K, Isham D, Murat C, Sun R, Baker JR, Choi SK. Chem. Commun. 2016; 52: 10357
    • 83d Wong PT, Tang S, Cannon J, Chen D, Sun R, Lee J, Phan J, Tao K, Sun K, Chen B, Baker JR, Choi SK. Bioconjugate Chem. 2017; 28: 3016
  • 84 Li G, Yang L, Liu J.-J, Zhang W, Cao R, Wang C, Zhang Z, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 5230

    • For studies into the photochemistry of nickel complexes, see:
    • 85a Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 85b Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
    • 85c Tian L, Till NA, Kudisch B, MacMillan DW. C, Scholes GD. J. Am. Chem. Soc. 2020; 142: 4555
    • 85d Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, Castellano FN, Doyle AG. J. Am. Chem. Soc. 2020; 142: 5800
  • 86 Begunov RS, Sakulina VO, Syroeshkin MA, Saverina EA, Sokolov AA, Minyaev ME. Mendeleev Commun. 2020; 30: 633
  • 87 Wang D, Wan Z, Zhang H, Alhumade H, Yi H, Lei A. ChemSusChem 2021; 14: 5399