CC BY-NC-ND 4.0 · Synthesis 2022; 54(14): 3180-3192
DOI: 10.1055/a-1782-4224
feature

Acrylamide-Based Pd-Nanoparticle Carriers as Smart Catalysts for the Suzuki–Miyaura Cross-Coupling of Amino Acids

Viktor Sabadasch
a   Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
,
Steffen Dachwitz
b   Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
,
Yvonne Hannappel
a   Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
,
Thomas Hellweg
a   Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
c   BINAS - Bielefeld Institute for Biophysics and Nanoscience, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
,
b   Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
› Author Affiliations
We acknowledge financial support from Deutsche Forschungsgemeinschaft (SE 609/16-1).


Abstract

Polyacrylamide-based waterborne microgels were prepared with copolymerized carboxylic acid and tertiary amine moieties. The colloidal gels were loaded with palladium nanoparticles and utilized for the Suzuki–Miyaura cross-coupling of amino acids and peptides. The thermoresponsive properties of the prepared microgels were characterized by means of photon correlation spectroscopy (PCS) at solvent conditions of the catalytic reaction. The localization and morphology of the incorporated nanoparticles were characterized with transmission electron microscopy (TEM). Palladium-catalyzed Suzuki–Miyaura cross-coupling of N α-Boc-4-iodophenylalanine and N α-Boc-7-bromotryptophan with phenylboronic acid was carried out under ambient atmosphere in water at 20, 37, and 60 °C, respectively. The properties of the thermoresponsive microgel showed a strong influence on the reactivity and selectivity towards the respective substrate. For the amine containing microgels, a recyclability for up to four cycles without loss in activity could be realized. Furthermore, the systems showed good catalytic activity regarding Suzuki–Miyaura cross-coupling of halogenated amino acids in selected tri- and tetrapeptides.

Supporting Information



Publication History

Received: 02 December 2021

Accepted after revision: 16 February 2022

Accepted Manuscript online:
25 February 2022

Article published online:
20 April 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Willemse T, Schepens W, Vlijmen H, Maes B, Ballet S. Catalysts 2017; 7: 74
    • 2b Gruß H, Sewald N. Chem. Eur. J. 2020; 26: 5328
  • 3 Dachwitz S, Duwe DH, Wang YH, Gruß H, Hannappel Y, Hellweg T, Sewald N. Chem. Eur. J. 2020; 26: 16357
  • 4 Chalker JM, Wood CS. C, Davis BG. J. Am. Chem. Soc. 2009; 131: 16346
  • 5 Roy AD, Goss RJ. M, Wagner GK, Winn M. Chem. Commun. 2008; 4831
  • 6 Willemse T, Van Imp K, Goss RJ. M, Van Vlijmen HW. T, Schepens W, Maes BU. W, Ballet S. ChemCatChem 2015; 7: 2055
    • 7a Frese M, Schnepel C, Minges H, Voß H, Feiner R, Sewald N. ChemCatChem 2016; 8: 1799
    • 7b Latham J, Henry J.-M, Sharif HH, Menon BR. K, Shepherd SA, Greaney MF, Micklefield J. Nat. Commun. 2016; 7: 11873
  • 8 Schnepel C, Minges H, Frese M, Sewald N. Angew. Chem. Int. Ed. 2016; 55: 14159
  • 9 Sharma SV, Tong X, Pubill-Ulldemolins C, Cartmell C, Bogosyan EJ. A, Rackham EJ, Marelli E, Hamed RB, Goss RJ. M. Nat. Commun. 2017; 8: 229
    • 10a Kemker I, Schnepel C, Schröder DC, Marion A, Sewald N. J. Med. Chem. 2019; 62: 7417
    • 10b Kemker I, Feiner RC, Müller KM, Sewald N. ChemBioChem 2020; 21: 496
  • 11 Liu C, Li X. Chem. Rec. 2016; 16: 84
  • 12 Dumas A, Peramo A, Desmaële D, Couvreur P. Chimia 2016; 70: 252
  • 13 Peramo A, Abdellah I, Pecnard S, Mougin J, Martini C, Couvreur P, Huc V, Desmaële D. Molecules 2020; 25: 1459
  • 14 Seto H, Morii T, Yoneda T, Murakami T, Hoshino Y, Miura Y. Chem. Lett. 2013; 42: 301
  • 15 Pelton RH, Chibante P. Colloids Surf. 1986; 20: 247
  • 16 Saunders BR, Vincent B. Adv. Colloid Interface Sci. 1999; 80: 1
    • 17a Hoare T, Pelton R. Langmuir 2008; 24: 1005
    • 17b Dirksen M, Kinder TA, Brändel T, Hellweg T. Molecules 2021; 26: 3181
    • 18a Zhang QM, Xu W, Serpe MJ. Angew. Chem. Int. Ed. 2014; 53: 4827
    • 18b Sorrell CD, Carter MC. D, Serpe MJ. Adv. Funct. Mater. 2011; 21: 425
    • 19a Kleinschmidt D, Fernandes MS, Mork M, Meyer AA, Krischel J, Anakhov MV, Gumerov RA, Potemkin II, Rueping M, Pich A. J. Colloid Interface Sci. 2020; 559: 76
    • 19b Kleinschmidt D, Nothdurft K, Anakhov MV, Meyer AA, Mork M, Gumerov RA, Potemkin II, Richtering W, Pich A. Mater. Adv. 2020; 1: 2983
    • 20a Begum R, Farooqi ZH, Xiao J, Ahmed E, Sharif A, Irfan A. J. Mol. Liq. 2021; 338: 116780
    • 20b Besold D, Risse S, Lu Y, Dzubiella J, Ballauff M. Ind. Eng. Chem. Res. 2021; 60: 3922
    • 20c Roa R, Angioletti-Uberti S, Lu Y, Dzubiella J, Piazza F, Ballauff M. Z. Phys. Chem. 2018; 232: 773
    • 20d Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M. Chem. Mater. 2007; 19: 1062
    • 20e Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M. J. Mater. Chem. 2009; 19: 3955
  • 21 Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 2229
  • 22 Angioletti-Uberti S, Lu Y, Ballauff M, Dzubiella J. J. Phys. Chem. C 2015; 119: 15723
    • 23a Hoare T, Pelton R. Macromolecules 2004; 37: 2544
    • 23b Hoare T, Pelton R. Langmuir 2004; 20: 2123
  • 24 Sabadasch V, Wiehemeier L, Kottke T, Hellweg T. Soft Matter 2020; 16: 5422
  • 25 Brändel T, Sabadasch V, Hannappel Y, Hellweg T. ACS Omega 2019; 4: 4636
  • 26 Hoare T, McLean D. J. Phys. Chem. B 2006; 110: 20327
  • 27 Pelton R. Adv. Colloid Interface Sci. 2000; 85: 1
  • 28 Kroschwitz JI, Kirk RE, Othmer DF, Seidel A. Kirk-Othmer Encyclopedia of Chemical Technology . Wiley-Interscience; Hoboken: 2004
  • 29 Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. J. Am. Chem. Soc. 2012; 134: 18177
    • 30a Hoare T, Pelton R. Curr. Opin. Colloid Interface Sci. 2008; 13: 413
    • 30b Kleinen J, Richtering W. Colloid Polym. Sci. 2011; 289: 739
  • 31 Friesen S, Hannappel Y, Kakorin S, Hellweg T. Gels 2021; 7: 42
    • 32a Kratz K, Hellweg T, Eimer W. Colloids Surf., A 2000; 170: 137
    • 32b Karanastasis AA, Kenath GS, Andersen D, Fokas D, Ryu CY, Ullal CK. J. Colloid Interface Sci. 2020; 568: 264
  • 33 Wrede O, Reimann Y, Lülsdorf S, Emmrich D, Schneider K, Schmid AJ, Zauser D, Hannappel Y, Beyer A, Schweins R, Gölzhäuser A, Hellweg T, Sottmann T. Sci. Rep. 2018; 13781
    • 34a Gelissen AP. H, Scotti A, Turnhoff SK, Janssen C, Radulescu A, Pich A, Rudov AA, Potemkin II, Richtering W. Soft Matter 2018; 14: 4287
    • 34b Annegarn M, Dirksen M, Hellweg T. Polymers 2021; 13: 827
  • 35 Mourran A, Wu Y, Gumerov RA, Rudov AA, Potemkin II, Pich A, Möller M. Langmuir 2016; 32: 723
  • 36 Hirano T, Nakamura K, Kamikubo T, Ishii S, Tani K, Mori T, Sato T. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 4575
  • 37 Rasband WS. ImageJ, version 1.52a 2021 . U. S. National Institutes of Health; Bethesda: 2021. https://imagej.nih.gov/ij/ (accessed April 3, 2022)
  • 38 Frisken BJ. Appl. Opt. 2001; 40: 4087