Synthesis 2022; 54(13): 2927-2975
DOI: 10.1055/a-1771-0641
review

Stereoselective Domino Reactions in the Synthesis of Spiro Compounds

Regina Westphal
a   Chemistry Department, Espírito Santo Federal University, Avenida Fernando Ferrari 514, Goiabeiras, Vitória, ES, Brazil
,
Eclair Venturini Filho
a   Chemistry Department, Espírito Santo Federal University, Avenida Fernando Ferrari 514, Goiabeiras, Vitória, ES, Brazil
,
Fabrizio Medici
b   Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19 Milano, Italy
,
b   Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19 Milano, Italy
,
Sandro J. Greco
a   Chemistry Department, Espírito Santo Federal University, Avenida Fernando Ferrari 514, Goiabeiras, Vitória, ES, Brazil
› Author Affiliations
M.B. thanks Ministero dell’Istruzione, dell’Università e della Ricerca (MUR) for the project PRIN 2017 NATURECHEM. F.M. also thanks MUR project PRIN 2017 NATURECHEM for a postdoctoral fellowship. S.J.G. thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico for financial support.


Abstract

This review summarizes the latest developments in asymmetric domino reactions, with the emphasis on the preparation of spiro compounds. Discussions on the stereoselectivity of the transformations, the reaction mechanisms, the rationalization of the stereochemical outcome, and the applications of domino reactions to the synthesis of biologically active molecules and natural products are included when appropriate.

1 Introduction

2 Asymmetric Domino Reactions

2.1 Domino Reactions Initiated by Michael Reactions

2.2 Domino Reactions Initiated by Mannich Reactions

2.3 Domino Reactions Initiated by Knoevenagel Reactions

2.4 Domino Reactions Initiated by Cycloaddition Reactions

2.5 Domino Reactions Initiated by Metal Insertion

2.6 Other Mechanisms

3 Conclusion



Publication History

Received: 20 December 2021

Accepted after revision: 14 February 2022

Accepted Manuscript online:
14 February 2022

Article published online:
16 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 2a Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 2b Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK. Synth. Commun. 2016; 46: 1643
    • 2c Zheng Y.-J, Tice CM. Expert Opin. Drug Discovery 2016; 11: 831
  • 3 Ding A, Meazza M, Guo H, Yang JW, Rios R. Chem. Soc. Rev. 2018; 47: 5946
  • 4 Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2003: 2209
  • 5 Sansinenea E, Martínez EF, Ortiz A. Eur. J. Org. Chem. 2020; 2020: 5101
  • 6 Saragi TP. I, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Chem. Rev. 2007; 107: 1011
    • 7a Pfau A, Plattner P. Helv. Chim. Acta 1939; 22: 640
    • 7b Chupakhin E, Babich O, Prosekov A, Asyakina L, Krasavin M. Molecules 2019; 24: 4165
    • 7c Smith LK, Baxendale IR. Org. Biomol. Chem. 2015; 13: 9907
    • 7d Raju BR, Saikia AK. Molecules 2008; 13: 1942
    • 7e Quintavalla A. Curr. Med. Chem. 2018; 25: 917
  • 8 Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
  • 10 Tietze LF, Brasche G, Gericke K. In Domino Reactions in Organic Synthesis 2006
  • 11 Liu X.-L, Zuo X, Wang J.-X, Chang S.-q, Weib Q.-D, Zhou Y. Org. Chem. Front. 2019; 6: 1485
    • 12a Amata E, Bland ND, Campbell RK, Pollastri MP. Tetrahedron Lett. 2015; 56: 2832
    • 12b Chande MS, Barve PA, Suryanarayan V. J. Heterocycl. Chem. 2007; 44: 49
    • 12c Leng H.-J, Li Q.-Z, Zeng R, Dai Q.-S, Zhu H.-P, Liu Y, Huang W, Han B, Li J.-L. Adv. Synth. Catal. 2018; 360: 229
    • 12d Han B, Xu S, Wang P. CN 104610148, 2015
  • 13 Rana NK, Shukla K, Mahto P, Jha RK, Singh VK. Tetrahedron 2018; 74: 5270

    • For reviews, see:
    • 14a Lalit K, Chandresh T, Vivek S. Int. J. Res. Pharm. Sci. 2012; 2: 13
    • 14b Hamama WS, El-Gohary HG, Kuhnert N, Zoorob HH. Curr. Org. Chem. 2012; 16: 373
    • 14c Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984

      For review, see:
    • 15a Yu B, Zheng Y.-C, Shi X.-J, Qi P.-P, Liu H.-M. Med. Chem. 2016; 16: 1315
    • 15b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 15c Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
    • 15d Yang Y.-T, Zhu J.-F, Liao GC, Xu H.-J, Yu B. Curr. Med. Chem. 2018; 25: 2233
    • 15e Panda SS, Jones RA, Bachawala P, Mohapatra PP. Med. Chem. 2017; 17: 1515
    • 15f Pavlovska TL, Redkin RG, Lipson VV, Atamanuk DV. Mol. Diversity 2016; 20: 299
    • 15g Yu B, Yu D.-Q, Liu H.-M. Eur. J. Med. Chem. 2015; 97: 673
    • 15h Yu B, Yu Z, Qi P.-P, Yu D.-Q, Liu H.-M. Eur. J. Med. Chem. 2015; 95: 35
  • 16 Chaudhari PD, Hong B.-C, Wen C.-L, Lee G.-H. ACS Omega 2019; 4: 655
    • 17a Takizawa S, Kishi K, Kusaba M, Jianfei B, Suzuki T, Sasai H. Heterocycles 2017; 95
    • 17b Ding L.-Z, Zhong T.-S, Wu H, Wang Y.-M. Eur. J. Org. Chem. 2014; 2014: 5139
    • 17c Monari M, Montroni E, Nitti A, Lombardo M, Trombini C, Quintavalla A. Chem. Eur. J. 2015; 21: 11038
    • 17d Wei Q, Gong L.-Z. Org. Lett. 2010; 12: 1008
    • 17e Bencivenni G, Wu L.-Y, Mazzanti A, Giannichi B, Pesciaioli F, Song M.-P, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 7200
  • 18 Zhao B.-L, Du D.-M. Chem. Commun. 2016; 52: 6162
    • 19a Li C.-Y, Xiang M, Song X.-J, Zou Y, Huang Z.-C, Li X, Tian F, Wang L.-X. Org. Biomol. Chem. 2020; 18: 9511
    • 19b Wang Q.-L, Cai T, Zhou J, Tian F, Xu X.-Y, Wang L.-X. Chem. Commun. 2015; 51: 10726
    • 19c Liu X.-L, Zhou G, Gong Y, Yao Z, Zuo X, Zhang W.-H, Zhou Y. Org. Lett. 2019; 21: 2528
  • 20 Hayashi Y, Nagai K, Umemiya S. Eur. J. Org. Chem. 2019; 2019: 678
  • 21 Meninno S, Overgaard J, Lattanzi A. Synthesis 2017; 49: 1509
    • 22a Maebashi M, Makino Y, Furukawa Y, Ohinata K, Kimura S, Sato T. J. Clin. Biochem. Nutr. 1993; 14: 211
    • 22b Zempleni J, Wijeratne SS. K, Hassan YI. Biofactors 2009; 35: 36
    • 22c Yoshimura Y, Watanabe M, Satoh H, Ashida N, Ijichi K, Sakata S, Machida H, Matsuda A. J. Med. Chem. 1997; 40: 2177
    • 22d Johnson JW, Evanoff DP, Savard ME, Lange G, Ramadhar TR, Assoud A, Taylor NJ, Dmitrienko GI. J. Org. Chem. 2008; 73: 6970
    • 22e Morita N, Krause N. Angew. Chem. Int. Ed. 2006; 45: 1897 ; and cited references
  • 23 Huang Y, Zheng C, Chai Z, Zhao G. Adv. Synth. Catal. 2014; 356: 579
  • 24 Duan J, Cheng J, Li B, Qi F, Li P. Eur. J. Org. Chem. 2015; 2015: 6130

    • Reviews:
    • 25a Mosey RA, Fisk JS, Tepe JJ. Tetrahedron: Asymmetry 2008; 19: 2755
    • 25b Alba A.-NR, Rios R. Chem. Asian J. 2011; 6: 720
  • 26 Weber M, Frey W, Peters R. Chem. Eur. J. 2013; 19: 8342
  • 27 Zhao S, Lin J.-B, Zhao Y.-Y, Liang Y.-M, Xu P.-F. Org. Lett. 2014; 16: 1802
  • 28 Wang S, Jiang Y, Wu S, Dong G, Miao Z, Zhang W, Sheng C. Org. Lett. 2016; 18: 1028
  • 29 Ji C, Wang S, Chen S, He S, Jiang Y, Miao Z, Li J, Sheng C. Bioorg. Med. Chem. 2017; 25: 5268
  • 30 Reddy GM, Ko C.-T, Hsieh K.-H, Lee C.-J, Das U, Lin W. J. Org. Chem. 2016; 81: 2420
  • 31 Luo N.-h, Sun X, Wei W.-t, Zhang X.-j, Yan M. Tetrahedron: Asymmetry 2013; 24: 402
  • 32 Ričko S, Testen Ž, Ciber L, Požgan F, Štefane B, Brodnik H, Svete J, Grošelj U. Catalysts 2020; 10: 1211
  • 33 Tang Q.-G, Cai S.-L, Wang C.-C, Lin G.-Q, Sun X.-W. Org. Lett. 2020; 22: 3351
    • 34a Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B. J. Org. Chem. 1991; 56: 6527
    • 34b Rottmann M, McNamara C, Yeung BK. S, Lee MC. S, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt E, Beck H.-P, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
    • 34c Zhou F, Liu YL, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 34d Larsen TO, Frydenvang K, Frisvad JC, Christophersen C. J. Nat. Prod. 1998; 61: 1154
    • 34e Ariza MR, Larsen TO, Petersen BO, Duus J, Christophersen C, Barrero AF. J. Nat. Prod. 2001; 64: 1590
    • 34f Hibino S, Choshi T. Nat. Prod. Rep. 2001; 18: 66
    • 34g Wu M, Ma D. Angew. Chem. Int. Ed. 2013; 52: 9759
    • 34h Chen L, Ding QJ, Liu JJ, Yang S, Zhang ZM. US 2007213341 A1, 2007
    • 34i Ding QJ, Liu JJ, Zhang ZM. WO 2007104714 A1, 2007
    • 35a Li J.-H, Wen H, Liu L, Du D.-M. Eur. J. Org. Chem. 2016; 2016: 2492
    • 35b Li J.-H, Du D.-M. Chem. Asian J. 2014; 9: 3278
    • 35c Yang W, Du D.-M. Chem. Commun. 2013; 49: 8842
    • 35d Zhao B.-L, Du D.-M. Asian J. Org. Chem. 2015; 4: 1120
  • 36 Huang Y.-M, Zheng C.-W, Zhao G. RSC Adv. 2013; 3: 16999
  • 37 Mao H, Lin A, Tang Y, Shi Y, Hu H, Cheng Y, Zhu C. Org. Lett. 2013; 15: 4062
  • 38 Deng Y, Sun S, Wang Y, Jia P, Li W, Wang K, Yan W. Adv. Synth. Catal. 2022; 364: 811
  • 39 Grošelj U, Ciber L, Gnidovec J, Testen Ž, Požgan F, Štefane B, Tavčar G, Svete J, Ričko S. Adv. Synth. Catal. 2019; 361: 5118

    • For selected examples of biologicaly active pyrrolin-4-ones see:
    • 40a Williams RM, Kwast E, Coffman H, Glinka T. Appl. Environ. Microbiol. 1989; 111: 3065
    • 40b Bowen C, Malcolm S, Melnick L, Xie L. WO 2013070659 A1, 2013
    • 40c Murugesan D, Mital A, Kaiser M, Shackleford DM, Morizzi J, Katneni K, Campbell M, Hudson A, Charman SA, Yeates C, Gilbert IH. J. Med. Chem. 2013; 56: 2975
    • 40d Murugesan D, Kaiser M, White KL, Norval S, Riley J, Wyatt PG, Charman SA, Read KD, Yeates C, Gilbert IH. ChemMedChem 2013; 8: 1537
    • 40e Smith AB, Hirschmann R, Pasternak A, Yao W, Sprengeler PA, Holloway MK, Kuo LC, Chen Z, Darke PL, Schleif WA. J. Med. Chem. 1997; 40: 2440
    • 41a Bharkavi C, Vivek SK, Perumal S. Synlett 2015; 26: 1665
    • 41b Kumar SV, Prasanna P, Perumal S. Tetrahedron Lett. 2013; 54: 6651
    • 41c Mahajan S, Chauhan P, Blümel M, Puttreddy R, Rissanen K, Raabe G, Enders D. Synthesis 2016; 48: 1131
    • 41d Kaya U, Mahajan S, Schöbel J.-H, Valkonen A, Rissanen K, Enders D. Synthesis 2016; 48: 4091
    • 41e Liang J.-J, Pan J.-Y, Xu D.-C, Xie J.-W. Tetrahedron Lett. 2014; 55: 6335
    • 41f Hu Y.-J, Wang X.-B, Li S.-Y, Xie S.-S, Wang KD. G, Kong L.-Y. Tetrahedron Lett. 2015; 56: 105
    • 41g Gui Y.-Y, Yang J, Qi L.-W, Wang X, Tian F, Li X.-N, Peng L, Wang L.-X. Org. Biomol. Chem. 2015; 13: 6371
    • 41h Duan S.-W, Li Y, Liu Y.-Y, Zou Y.-Q, Shi D.-Q, Xiao W.-J. Chem. Commun. 2012; 48: 5160
  • 42 Tan B, Candeias NR, Barbas CF. III. Nat. Chem. 2011; 3: 473
  • 43 Huang X.-F, Liu Z.-M, Geng Z.-C, Zhang S.-Y, Wang Y, Wang X.-W. Org. Biomol. Chem. 2012; 10: 8794
  • 45 Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett. 2019; 21: 1632
    • 46a Ke B, Tian M, Li J, Liu B, He G. Med. Res. Rev. 2016; 36: 983
    • 46b Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 46c Varvounis G. Adv. Heterocycl. Chem. 2009; 98: 143
    • 46d Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
  • 47 Zhou P, Cai Y, Lin L, Lian X, Xia Y, Liu X, Feng X. Adv. Synth. Catal. 2015; 357: 695
  • 48 Sun J, Jiang C, Zhou Z. Eur. J. Org. Chem. 2016; 2016: 1165
    • 49a Qi L.-W, Wang L.-L, Peng L, Jia L.-N, Tian F, Xu X.-Y, Wang L.-X. Tetrahedron 2013; 69: 9303
    • 49b Wang L.-L, Peng L, Bai J.-F, Huang Q.-C, Xu X.-Y, Wang L.-X. Chem. Commun. 2010; 46: 8064
  • 50 Duan J, Cheng J, Li P. Org. Chem. Front. 2015; 2: 1048
  • 51 Arai T, Miyazaki T, Ogawa H, Masu H. Org. Lett. 2016; 18: 5824
  • 52 Wang S, Chen S, Guo Z, He S, Zhang F, Liu X, Chen W, Zhang S, Sheng C. Org. Biomol. Chem. 2018; 16: 625
  • 53 Companyo X, Zea A, Alba A.-NR, Mazzanti A, Moyano A, Rios R. Chem. Commun. 2010; 46: 6953
  • 54 Zeng X, Ni Q, Raabe G, Enders D. Angew. Chem. Int. Ed. 2013; 52: 2977
  • 55 Géant P.-Y, Urban M, Remeš M, Císařová I, Veselý J. Eur. J. Org. Chem. 2013; 2013: 7979
  • 56 Kuan H.-H, Chien C.-H, Chen K. Org. Lett. 2013; 15: 2880
  • 57 Jiang K, Jia Z.-J, Yin X, Wu L, Chen Y.-C. Org. Lett. 2010; 12: 2766
  • 58 Ren W, Wang X.-Y, Li J.-J, Tian M, Liu J, Ouyanga L, Wang J.-H. RSC Adv. 2017; 7: 1863
  • 59 Chaudhari PD, Hong B.-C, Lee G.-H. Org. Lett. 2017; 19: 6112
  • 60 Bai M, Chen Y.-Z, Cui B.-D, Xu X.-Y, Yuan W.-C. Tetrahedron 2019; 75: 2155
  • 61 Yang P, Wang X, Chen F, Zhang Z.-B, Chen C, Peng L, Wang L.-X. J. Org. Chem. 2017; 82: 3908
  • 62 Cui B.-D, Li S.-W, Zuo J, Wu Z.-J, Zhang X.-M, Yuan W.-C. Tetrahedron 2014; 70: 1895
  • 63 Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Angew. Chem. Int. Ed. 2011; 50: 9124
  • 64 Liu L, Zhong Y, Zhang P, Jiang X, Wang R. J. Org. Chem. 2012; 77: 10228
  • 65 Zhu W.-R, Chen Q, Lin N, Chen K.-B, Zhang Z.-W, Fang G, Weng J, Lu G. Org. Chem. Front. 2018; 5: 1375
  • 66 Tan F, Cheng H.-G, Feng B, Zou Y.-Q, Duan S.-W, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 2013: 2071
  • 67 Fu Z.-K, Pan J.-Y, Xu D.-C, Xie J.-W. RSC Adv. 2014; 4: 51548
  • 68 Hu J.-L, Sha F, Li Q, Wu X.-Y. Tetrahedron 2018; 74: 7148
    • 69a Li T.-Z, Xie J, Jiang Y, Sha F, Wu X.-Y. Adv. Synth. Catal. 2015; 357: 3507
    • 69b Xie J, Xing X.-Y, Sha F, Wub Z.-Y, Wu X.-Y. Org. Biomol. Chem. 2016; 14: 8346
    • 69c Xie J, Xing W.-L, Sha F, Wu X.-Y. Eur. J. Org. Chem. 2016; 2016: 3983
  • 70 Pan F.-F, Yu W, Qi Z.-H, Qiao C, Wang X.-W. Synthesis 2014; 46: 1143
  • 71 Jiang X, Sun Y, Yao J, Cao Y, Kai M, He N, Zhang X, Wang Y, Wang R. Adv. Synth. Catal. 2012; 354: 917
  • 72 Zhu X.-Q, Wu J.-S, Xie J.-W. Tetrahedron 2016; 72: 8327
  • 73 Chennapuram M, Owolabi IA, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. ACS Omega 2018; 3: 11718
  • 74 Zhang J, Cheng C, Wang D, Miao Z. J. Org. Chem. 2017; 82: 10121
  • 75 Zhou H.-J, Zhou W, Liu X.-L, Tian Y.-P, Wang J.-X, Zhou Y. Synthesis 2020; 52: 3047
  • 76 Huang Z, Zou Y, Xiang M, Li C, Li X, Tian F, Wang L. Org. Lett. 2021; 23: 2227
  • 77 Yin X, Zheng Y, Feng X, Jiang K, Wei X.-Z, Gao N, Chen Y.-C. Angew. Chem. Int. Ed. 2014; 53: 6245
  • 78 He X.-L, Xiao Y.-C, Du W, Chen Y.-C. Chem. Eur. J. 2015; 21: 3443
  • 79 Zhi Y, Zhao K, von Essen C, Rissanen K, Enders D. Synlett 2017; 28: 2876
  • 80 Song Y.-X, Du D.-M. J. Org. Chem. 2018; 83: 9278
  • 81 Lin Y, Song Y.-X, Du D.-M. Adv. Synth. Catal. 2019; 361: 1064
  • 82 Zhao B.-L, Du D.-M. Adv. Synth. Catal. 2019; 361: 3412
  • 83 Wu H, Wang Y.-M. Chem. Eur. J. 2014; 20: 5899
  • 84 Jacob RG, Perin G, Botteselle GV, Lenardão EJ. Tetrahedron Lett. 2003; 44: 6809
  • 85 Hodík T, Schneider C. Chem. Eur. J. 2018; 24: 18082
  • 86 Zhou J, Wang Q.-L, Peng L, Tian F, Xu X.-Y, Wang L.-X. Chem. Commun. 2014; 50: 14601
  • 87 Pesciaioli F, Righi P, Mazzanti A, Bartoli G, Bencivenni G. Chem. Eur. J. 2011; 17: 2842
  • 88 Sun W, Zhu G, Wu C, Hong L, Wang R. Chem. Eur. J. 2012; 18: 6737
  • 89 Goudedranche S, Bugaut X, Constantieux T, Bonne D, Rodriguez J. Chem. Eur. J. 2014; 20: 410
    • 91a Albertshofer K, Tan B, Barbas CF. III. Org. Lett. 2012; 14: 1834
    • 91b Wang S, Guo Z, Chen S, Jiang Y, Zhang F, Liu X, Chen W, Sheng C. Chem. Eur. J. 2018; 24: 62
    • 92a Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
    • 92b Ye Z, Bai L, Bai Y, Gan Z, Zhou H, Pan T, Yu Y, Zhou J. Tetrahedron 2019; 75: 682
  • 93 You Y, Cui B.-D, Zhou M.-Q, Zuo J, Zhao J.-Q, Xu X.-Y, Zhang X.-M, Yuan W.-C. J. Org. Chem. 2015; 80: 5951
  • 94 Palomba M, Rossi L, Sancineto L, Tramontano E, Corona A, Bagnoli L, Santi C, Pannecouque C, Tabarrinia O, Marini F. Org. Biomol. Chem. 2016; 14: 2015
  • 95 Zhang K, Meazza M, Dočekal V, Light ME, Veselý J, Rios R. Eur. J. Org. Chem. 2017; 2017: 1749

    • For review see:
    • 96a Arend M, Westermann B, Risch N. Angew. Chem. Int. Ed. 1998; 37: 1044
    • 96b Roman G. Eur. J. Med. Chem. 2015; 89: 743
    • 96c Heravi MM, Zadsirjan V, Savadjani ZB. Curr. Org. Chem. 2014; 18: 2857
    • 96d Greco SJ, Lacerda VJr, dos Santos RB. Aldrichimica Acta 2011; 44: 15
    • 96e Allochio Filho JF, Lemos BC, de Souza AS, Pinheiro S, Greco SJ. Tetrahedron 2017; 73: 6977
  • 97 Zhao K, Zhi Y, Li X, Puttreddy R, Rissanenb K, Enders D. Chem. Commun. 2016; 52: 2249
  • 98 Huang X, Zhang Y.-R, Li X.-S, Xu D.-C, Xie J.-W. Tetrahedron Lett. 2013; 54: 5857
  • 99 Bai M, Cui B.-D, Zuo J, Zhao J.-Q, You Y, Chen Y.-Z, Xu X.-Y, Zhang X.-M, Yuan W.-C. Tetrahedron 2015; 71: 949
  • 100 Ping X.-N, Chen W, Lu X.-Y, Xie J.-W. ARKIVOC 2016; (vi): 274
  • 101 Zhao B.-L, Du D.-M. Org. Lett. 2018; 20: 3797

    • For review see:
    • 102a Han Y.-F, Xia M. Curr. Org. Chem. 2010; 14: 379
    • 102b Voskressensky LG, Festa AA, Varlamov AV. Tetrahedron 2014; 70: 551
    • 102c Majumdar KC, Taher A, Nandi RK. Tetrahedron 2012; 68: 5693
  • 103 Ramachary DB, Chowdari NS, Barbas CF. III. Synlett 2003; 1910
  • 104 Ramachary DB, Anebouselvy K, Chowdari NS, Barbas CF. III. J. Org. Chem. 2004; 69: 5838
  • 105 Chen W.-B, Wu Z.-J, Pei Q.-L, Cun L.-F, Zhang X.-M, Yuan W.-C. Org. Lett. 2010; 12: 3132
  • 106 Zhao H.-W, Li B, Tian T, Meng W, Yang Z, Song X.-Q, Chen X.-Q, Pang H.-L. Eur. J. Org. Chem. 2015; 2015: 3320
  • 107 Miao Y.-H, Hua Y.-Z, Wang M.-C. Org. Biomol. Chem. 2019; 17: 7172
  • 108 Du T, Du F, Ning Y, Peng Y. Org. Lett. 2015; 17: 1308
  • 109 He Y.-H, He T, Guo J.-T, Li R, Xiang Y, Yang D.-C, Guan Z. Catal. Sci. Technol. 2016; 6: 2239
  • 110 Thanki N, Umrania Y, Thornton JM, Goodfellow JM. J. Mol. Biol. 1991; 221: 669
  • 111 Dee DR, Filonowicz S, Horimoto Y, Yada RY. Biochim. Biophys. Acta, Proteins Proteomics 2009; 1794: 1795
  • 112 Peng J, Huang X, Jiang L, Cui H.-L, Chen Y.-C. Org. Lett. 2011; 13: 4584
  • 113 Shen G.-L, Sun J, Yan C.-G. Org. Biomol. Chem. 2015; 13: 10929
  • 114 Mal K, Ray S, Maity S, Nurjamal K, Ghosh P, Brahmachari G, Mukhopadhyay C. ChemistrySelect 2021; 6: 1263
  • 115 Chithiraikumar C, Ponmuthu KV, Harikrishnan M, Malini N, Sepperumal M, Siva A. Res. Chem. Intermed. 2021; 47: 895
  • 116 Toffano M, Guillot R, Bournaud C, Brière J.-F, Vo-Thanh G. Adv. Synth. Catal. 2021; 363: 4452
  • 117 Pellissier H. Adv. Synth. Catal. 2019; 361: 1733
  • 118 Pellissier H. Org. Prep. Proced. Int. 2019; 51: 311
  • 119 Tan F, Lu L.-Q, Yang Q.-Q, Guo W, Bian Q, Chen J.-R, Xiao W.-J. Chem. Eur. J. 2014; 20: 3415
  • 120 Zhao J.-Q, Wu Z.-J, Zhou M.-Q, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2015; 17: 5020
  • 121 Hanhan NV, Ball-Jones NR, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2012; 51: 989
  • 122 Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2014; 53: 9462
  • 123 Li Z, Shi Y. Org. Lett. 2015; 17: 5752
  • 124 Cao W, Liu X, Guo J, Lin L, Feng X. Chem. Eur. J. 2015; 21: 1632
  • 125 Zhao X, Liu X, Mei H, Guo J, Lin L, Feng X. Angew. Chem. Int. Ed. 2015; 54: 4032
  • 126 Zhao X, Liu X, Xiong Q, Mei H, Ma B, Lin L, Feng X. Chem. Commun. 2015; 51: 16076
  • 127 Kato S, Kanai M, Matsunaga S. Chem. Asian J. 2013; 8: 1768
  • 128 Fang W, Presset M, Guérinot A, Bour C, Bezzenine-Lafollée S, Gandon V. Chem. Eur. J. 2014; 20: 5439
  • 129 Hack D, Dîrr AB, Deckers K, Chauhan P, Seling N, Rîbenach L, Mertens L, Raabe G, Schoenebeck F, Enders D. Angew. Chem. Int. Ed. 2016; 55: 1797
  • 130 Putatunda S, Alegre-Requena JV, Meazza M, Franc M, Rohaľová D, Vemuri P, Císařová I, Herrera RP, Rios R, Veselý J. Chem. Sci. 2019; 10: 4107
  • 131 Meazza M, Kamlar M, Jašíková L, Formánek B, Mazzanti A, Roithová J, Veselý J, Rios R. Chem. Sci. 2018; 9: 6368
  • 132 Afewerki S, Ma G, Ibrahem I, Liu L, Sun J, Córdova A. ACS Catal. 2015; 5: 1266
  • 133 Chogii I, Njardarson JT. Angew. Chem. Int. Ed. 2015; 54: 13706
  • 134 Arunprasath D, Bala BD, Sekar G. Org. Lett. 2017; 19: 5280
  • 135 Liu J.-G, Chen W.-W, Gu C.-X, Xu B, Xu M.-H. Org. Lett. 2018; 20: 2728
  • 136 Beltran F, Miesch L. Org. Lett. 2019; 21: 1569
  • 137 Beltran F, Andna L, Miesch L. Org. Chem. Front. 2019; 6: 373
  • 138 Li T.-Z, Jiang Y, Guan Y.-Q, Sha F, Wu X.-Y. Chem. Commun. 2014; 50: 10790
  • 139 Han J.-L, Chang C.-H. Chem. Commun. 2016; 52: 2322
  • 140 Du D, Hu Z, Jin J, Lu Y, Tang W, Wang B, Lu T. Org. Lett. 2012; 14: 1274
  • 141 Sánchez-Larios E, Holmes JM, Daschner CL, Gravel M. Org. Lett. 2010; 12: 5772
  • 142 Sun FG, Huang XL, Ye S. J. Org. Chem. 2010; 75: 273
  • 143 Yadav A, Banerjee J, Arupula SK, Mobin SM, Samanta S. Asian J. Org. Chem. 2018; 7: 1595
  • 144 Hajra S, Bhosale SS, Hazra A, Kanaujia N. Org. Biomol. Chem. 2019; 17: 8140
  • 145 Xiao B.-X, Jiang B, Song X, Du W, Chen Y.-C. Chem. Commun. 2019; 55: 3097
  • 146 Wang Y, Wang X, Lin J, Yao B, Wang G, Zhao Y, Zhang X, Lin B, Liu Y, Cheng M, Liu Y. Adv. Synth. Catal. 2018; 360: 1483
    • 147a Barluenga J, Fañanás-Mastral M, Aznar F, Valdés C. Angew. Chem. Int. Ed. 2008; 47: 6594
    • 147b Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
  • 148 Zheng C, You S. Acc. Chem. Res. 2020; 53: 974