Synthesis 2022; 54(14): 3193-3200
DOI: 10.1055/a-1767-6153
feature

Cinchona Alkaloid Catalyzed Dynamic Kinetic Resolution of Biaryl Aldehydes via Asymmetric Decarboxylative Transamination

Donghui Guo
,
Jian Wang
The authors thank the National Natural Science Foundation of China (21871160, 21672121, and 22071130), the National Ten Thousand Talent Program of China, Tsinghua University, the Bayer Investigator Fellow award, and the Fellowship of Tsinghua-Peking Centre for Life Sciences (CLS) for their generous financial support


Abstract

An unprecedented Cinchona alkaloid catalyzed atropoenantioselective transamination of biaryl aldehydes with 2,2-diphenylglycine via a cascade decarboxylation and dynamic kinetic resolution strategy is described. This protocol features broad substrate scope and good functional group tolerance and allows the rapid assembly of axially chiral biaryls in high yields with acceptable to good enantioselectivities. In addition, such structural motifs may have potential applications in enantioselective catalysis as chiral ligands or catalysts.

Supporting Information



Publication History

Received: 13 January 2022

Accepted after revision: 09 February 2022

Accepted Manuscript online:
09 February 2022

Article published online:
06 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Keller PA, Butler NM, McCosker PM. Atropisomerism and Axial Chirality . Lassaletta JM. World Scientific; New Jersey: 2019: 611
    • 1b Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
    • 1c Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
    • 1d Wang J, Zhao C, Wang J. ACS Catal. 2021; 11: 12520
    • 1e Zhao C, Blaszczyk SA, Wang J. Green Synth. Catal. 2021; 2: 198
    • 2a Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011
    • 2b Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan AS. Coord. Chem. Rev. 2007; 251: 2119
    • 2c Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
    • 3a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 3b Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
  • 4 Brunel JM. Chem. Rev. 2008; 108: 1170
  • 5 Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
    • 6a Ko D.-H, Kim KH, Ha D.-C. Org. Lett. 2002; 4: 3759
    • 6b Kang S.-W, Ko D.-H, Kim KH, Ha D.-C. Org. Lett. 2003; 5: 4517
    • 6c Bringmann G, Breuning M. Tetrahedron: Asymmetry 1998; 9: 667
    • 6d Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. ACS Catal. 2021; 11: 4117
  • 7 Brown KJ, Berry MS, Murdoch JR. J. Org. Chem. 1985; 50: 4345

    • For recent reviews, see:
    • 8a Breslow R. Acc. Chem. Res. 1995; 28: 146
    • 8b Han J, Sorochinsky AE, Ono T, Soloshonok VA. Curr. Org. Synth. 2011; 8: 281
    • 8c Xie Y, Pan H, Liu M, Xiao X, Shi Y. Chem. Soc. Rev. 2015; 44: 1740

      Selected examples of transamination:
    • 9a Bernauer K, Deschenaux R, Taura T. Helv. Chim. Acta 1983; 66: 2049
    • 9b Deschenaux R, Bernauer K. Helv. Chim. Acta 1984; 67: 373
    • 9c Hjelmencrantz A, Berg U. J. Org. Chem. 2002; 67: 3585
    • 9d Knudsen KR, Bachmann S, Jørgensen KA. Chem. Commun. 2003; 2602
    • 9e Xiao X, Xie Y, Su C, Liu M, Shi Y. J. Am. Chem. Soc. 2011; 133: 12914
    • 9f Xiao X, Liu M, Rong C, Xue F, Li S, Xie Y, Shi Y. Org. Lett. 2012; 14: 5270
    • 9g Su C, Xie Y, Pan H, Liu M, Tian H, Shi Y. Org. Biomol. Chem. 2014; 12: 5856
    • 9h Wu Y, Deng L. J. Am. Chem. Soc. 2012; 134: 14334
    • 9i Liu YE, Lu Z, Li B, Tian J, Liu F, Zhao J, Hou C, Li Y, Niu L, Zhao B. J. Am. Chem. Soc. 2016; 138: 10730
    • 9j Cai W, Qiao X, Zhang H, Li B, Guo J, Zhang L, Chen W.-W, Zhao B. Nat. Commun. 2021; 12: 5174
    • 9k Peng Q, Yan B, Li F, Lang M, Zhang B, Guo D, Bierer D, Wang J. Commun. Chem. 2021; 4: 148
    • 9l Chen W.-W, Zhao B. Synlett 2020; 31: 1543
    • 9m Kang Q.-K, Selvakumar S, Maruoka K. Org. Lett. 2019; 21: 2294

      For selected reviews on DKR, see:
    • 10a Noyori R, Tokunaga M, Kitamura M. Bull. Chem. Soc. Jpn. 1995; 68: 36
    • 10b Caddick S, Jenkins K. Chem. Soc. Rev. 1996; 25: 447
    • 10c Huerta FF, Minidis AB, Bäckvall J.-E. Chem. Soc. Rev. 2001; 30: 321
    • 10d Steinreiber J, Faber K, Griengl H. Chem. Eur. J. 2008; 14: 8060
    • 10e Verho O, Bäckvall J.-E. J. Am. Chem. Soc. 2015; 137: 3996
    • 10f Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
  • 11 Bringmann G, Hinrichs J, Pabst T, Henschel P, Peters K, Peters E.-M. Synthesis 2001; 155
    • 12a Ashizawa T, Tanaka S, Yamada T. Org. Lett. 2008; 10: 2521
    • 12b Ashizawa T, Yamada T. Chem. Lett. 2009; 38: 246
  • 13 Yu C, Huang H, Li X, Zhang Y, Wang W. J. Am. Chem. Soc. 2016; 138: 6956
  • 14 Chen G.-Q, Lin B.-J, Huang J.-M, Zhao L.-Y, Chen Q.-S, Jia S.-P, Yin Q, Zhang X. J. Am. Chem. Soc. 2018; 140: 8064
  • 15 Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Nat. Commun. 2020; 11: 946
  • 16 Mori K, Itakura T, Akiyama T. Angew. Chem. Int. Ed. 2016; 55: 11642
    • 17a Zhang J, Wang J. Angew. Chem. Int. Ed. 2018; 57: 465
    • 17b Guo D, Zhang J, Zhang B, Wang J. Org. Lett. 2018; 20: 6284
    • 17c Zhang B, Liu L, Guo D, Wang J. ChemistrySelect 2019; 4: 1195
  • 18 Li Z, Zhou H, Xu J. Org. Lett. 2021; 23: 6391
  • 19 CCDC 2141486 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.