Synlett 2022; 33(10): 919-926
DOI: 10.1055/a-1755-3090
account

Evolution of a Reagent-Controlled Strategy for β-Selective C-Glycoside Synthesis

Clay S. Bennett
We thank the National Science Foundation (CHE-1300334, CHE-1566233, and CHE-1954841) and the National Institutes of Health (NIH) common fund (U01-GM120414) for generously support this research program.


Abstract

C-Alkyl glycosides represent an attractive class of nonhydrolyzable carbohydrate mimetics which possess enormous potential as next-generation therapeutics. Methods for the direct stereoselective synthesis of C-alkyl glycosides with a broad substrate tolerance are limited, however. This is especially in the case of β-linked C-alkyl glycosides, where direct methods for synthesis from commonly available coupling partners remain limited. This Account describes the evolution of our laboratory’s studies on glycosyl sulfonate chemistry from a method for the construction of simple β-linked 2-deoxy-sugars to a technology for the direct synthesis of β-linked acyl and homoacyl glycosides that can be elaborated into more complex structures.

1 Introduction

2 Glycosyl Sulfonates

3 Glycosyl Sulfonates in Oligosaccharide Synthesis

4 Matching Donor and Sulfonate Reactivity

5 β-Linked C-Acyl and Homoacyl Glycoside Synthesis

6 Elaboration to other Products

7 Conclusion



Publication History

Received: 21 January 2022

Accepted: 31 January 2022

Accepted Manuscript online:
31 January 2022

Article published online:
21 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang S.-K, Cheng C.-M. Chem. Commun. 2015; 51: 16750
  • 2 Astronomo RD, Burton DR. Nat. Rev. Drug Discovery 2010; 9: 308
  • 3 Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 4a Aseniso JL, Espinosa JF, Dietrich H, Cañada FJ, Schmidt RR, Martín-Lomas M, André S, Gabius H.-J, Jiménez-Barbero J. J. Am. Chem. Soc. 1999; 121: 8995
    • 4b García-Herrero A, Montero E, Muñoz JL, Espinosa JF, Vián A, García JL, Asensio JF, Cañada FJ, Jiménez-Barbero J. J. Am. Chem. Soc. 2002; 124: 4804
    • 4c Hirai G, Kato M, Koshino H, Nishizawa E, Oonuma K, Ota E, Watanabe T, Hashizume D, Tamura Y, Okada M, Miyagi T, Sodeoka M. JACS Au 2021; 1: 137
    • 4d Wei A, Haudrechy A, Audin CA, Jun H.-S, Haudrechy-Bretel N, Kishi Y. J. Org. Chem. 1995; 60: 2160
    • 4e Rubinstenn G, Sinaÿ P, Berthault P. J. Phys. Chem. A 1997; 101: 2536
    • 5a Ravishankar R, Surolia A, Vijayan M, Lim S, Kishi Y. J. Am. Chem. Soc. 1998; 120: 11297
    • 5b Helmboldt A, Petitou M, Mallet J.-M, Hérault J.-P, Lormeau J.-C, Driguez PA, Herbert J.-M, Sinaÿ P. Bioorg. Med. Chem. Lett. 1997; 7: 1507
    • 5c Wang J, Kováč P, Sinäy P, Glaudemans CP. J. Carbohydr. Res. 1998; 308: 191
    • 5d Pasquarello C, Demange R, Vogel P. Bioorg. Med. Chem. Lett. 1999; 9: 793
    • 5e Wei A, Boy KM, Kishi Y. J. Am. Chem. Soc. 1995; 117: 9432
    • 5f Espinosa JF, Montero E, Vian A, García JL, Dietrich H, Schmidt RR, Martín-Lomas M, Cañada FJ, Jiménez-Barbero J. J. Am. Chem. Soc. 1998; 120: 1309
  • 6 Yang G, Schmieg J, Tsuji M, Franck RW. Angew. Chem. Int. Ed. 2004; 43: 3818
  • 7 Giese B, Witzel Y. Angew. Chem., Int. Ed. Engl. 1986; 25: 450
  • 8 Masuda K, Nagamoto M, Inoue M. Nat. Chem. 2017; 9: 207
    • 9a MacDougall JM, Zhang X.-D, Polgar WE, Khroyan TV, Toll L, Cashman JR. Bioorg. Med. Chem. Lett. 2005; 15: 1583
    • 9b Reddy MR, Aidhen IS, Shruthi K, Reddy GB. Eur. J. Org. Chem. 2017; 7283
    • 9c Reddy MR, Hemaiswarya S, Kommidi H, Aiden IS, Doble M. Eur. J. Org. Chem. 2019; 6053
  • 10 Zhu F, Rodriguez J, O’Neill S, Walczak M. ACS Cent. Sci. 2018; 4: 1652
  • 11 Noel A, Delpech B, Crich D. Org. Lett. 2012; 14: 1342
  • 12 Bennett CS, Galan MC. Chem. Rev. 2018; 118: 7931
    • 13a Roush WR, Bennett CE. J. Am. Chem. Soc. 1999; 121: 3541
    • 13b Yang X, Fu B, Yu B. J. Am. Chem. Soc. 2011; 133: 12433
  • 14 Babu RS, Zhou M, O’Doherty GA. J. Am. Chem. Soc. 2004; 126: 3428
  • 15 Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jinénez-Barbero J, Thibaudeau S, Blériot Y. Nat. Chem. 2016; 8: 186
  • 16 Crich D. J. Am. Chem. Soc. 2021; 43: 17
  • 17 Guo Y, Sulikowski GA. J. Am. Chem. Soc. 1998; 120: 1392
  • 18 Morris WJ, Shair MD. Org. Lett. 2009; 11: 9
  • 19 Issa JP, Lloyd D, Steliotes E, Bennett CS. Org. Lett. 2013; 15: 4170
  • 20 Issa JP, Bennett CS. J. Am. Chem. Soc. 2014; 136: 5740
  • 21 Elshahawi SI, Shaaban KA, Kharel M, Thorson JS. Chem. Soc. Rev. 2015; 44: 7591
  • 22 Lloyd D, Bennett CS. Chem. Eur. J. 2018; 24: 7610
  • 23 Mizia JC, Bennett CS. Org. Lett. 2019; 21: 5922
  • 24 Yalamanchili S, Lloyd D, Bennett CS. Org. Lett. 2019; 21: 3674
  • 25 Yu B, Wang P. Org. Lett. 2002; 4: 1919
    • 26a Lee J, Kang J, Lee S, Rhee YH. Angew. Chem. Int. Ed. 2020; 59: 2439
    • 26b Xie T, Zheng C, Chen K, He H, Gao S. Angew. Chem. Int. Ed. 2020; 59: 4360
    • 26c Chen K, Xie T, Shen Y, He H, Zhao X, Gao S. Org. Lett. 2021; 23: 1769
  • 27 Zhang Z, Ollmann IR, Ye X.-S, Wischnat R, Baasov T, Wong C.-H. J. Am. Chem. Soc. 1999; 121: 734
  • 28 Chen J.-H, Ruei J.-H, Mong K.-KT. Eur. J. Org. Chem. 2014; 1827
  • 29 Zhou M.-H, Wilbur DJ, Kwan EE, Bennett CS. J. Am. Chem. Soc. 2019; 141: 16743
    • 30a Meyer MP, DelMonte AJ, Singleton DA. J. Am. Chem. Soc. 1999; 121: 10865
    • 30b Kwan EE, Park Y, Besser HA, Anderson TL, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 43
  • 31 Yang C.-T, Zhang Z.-Q, Liang J, Liu J.-H, Lu X.-Y, Chen H.-H, Liu L. J. Am. Chem. Soc. 2012; 134: 11124
  • 32 Ling J, Bennett CS. Angew. Chem. Int. Ed. 2020; 59: 4304
  • 33 Quintard A, Rodriguez J. ACS Catal. 2017; 7: 5513
  • 34 Babu RS, Chen Q, Kang S.-W, Zhou M, O’Doherty GA. J. Am. Chem. Soc. 2012; 134: 11952
  • 35 Mizia JC, Syed MU, Bennett CS. Org. Lett 2022; 24: 731