Synthesis 2022; 54(11): 2561-2573
DOI: 10.1055/a-1751-1929
short review

Transition-Metal-Catalyzed Decarbonylative Functionalization of Phthalimides

Ying-Ying Liu
a   Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. of China   URL: http://www.lbcs.dicp.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Shao-Han Sun
a   Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. of China   URL: http://www.lbcs.dicp.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Xiang-Ting Min
a   Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. of China   URL: http://www.lbcs.dicp.ac.cn
,
Boshun Wan
a   Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. of China   URL: http://www.lbcs.dicp.ac.cn
,
Qing-An Chen
a   Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. of China   URL: http://www.lbcs.dicp.ac.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (Grant Nos. 21971234, 21772194, and 21572225) is acknowledged.


Abstract

Phthalimide derivatives are prevalent in a wide array of biologically important molecules, including drugs, fungicides, and anticancer molecules. Thus, catalytic methods that directly edit the phthalimide moiety, in particular, decarbonylation and derivatization, could be strategically valuable for the modification of existing phthalimide molecular scaffolds. In recent years, considerable efforts have been devoted to emulating the transition-metal-catalyzed phthalimide decarbonylative reaction. A set of elegant strategies, including decarbonylative addition reactions with alkynes, alkenes, and benzynes, decarbonylative polymerization, alkylation, arylation, and protodecarbonylation, have been demonstrated. This review aims to highlight these advances and discusses the mechanism issues, to further expand application and promote developments in this field.

1 Introduction

2 Decarbonylative Addition Reaction with Alkynes

3 Decarbonylative Addition Reaction with Alkenes

4 Decarbonylative Addition Reaction with Benzyne

5 Decarbonylative Polymerization

6 Decarbonylative Alkylation

7 Decarbonylative Arylation

8 Protodecarbonylation

9 Conclusion and Outlook



Publication History

Received: 28 December 2021

Accepted after revision: 26 January 2022

Accepted Manuscript online:
26 January 2022

Article published online:
17 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hideshima T, Chauhan D, Shima Y, Noopur R, Davies FE, Tai YT, Treon SP, Lin BK, Schlossman RL, Richardson PG, Gupta D, Muller GW, Stirling DI, Anderson KC. Blood 2000; 96: 304A
    • 1b Tsunoda T, Yamazaki A, Iwamoto H, Sakamoto S. Org. Process Res. Dev. 2003; 7: 883
    • 1c Ramirez-Flores PN, Barraza-Reyna PJ, Aguirre-Vazquez A, Camacho-Moll ME, Guerrero-Beltran CE, Resendez-Perez D, Gonzalez-Villasana V, Garza-Gonzalez JN, Silva-Ramirez B, Castorena-Torres F, Bermudez de Leon M. Molecules 2021; 26: 5742
    • 1d Wang D, Wang Y, Sun S. Ren. Fail. 2021; 43: 1425
    • 1e Zheng W, Fu L. Am. J. Transl. Res. 2021; 13: 10809
    • 2a Chapman RE, Rigby RD. G. Aust. J. Biol. Sci. 1980; 33: 183
    • 2b Il’in AV, Gubaev AF, Islamov DR, Islamov KR, Galkin VI. Chem. Heterocycl. Compd. 2021; 57: 175
    • 4a Scott LJ. Drugs 2014; 74: 549
    • 4b Hartmann MD, Boichenko I, Coles M, Zanini F, Lupas AN, Alvarez BH. J. Struct. Biol. 2014; 188: 225
    • 5a Isoherranen N, Yagen B, Spiegelstein O, Finnell RH, Merriweather M, Woodhead JH, Wlodarczyk B, White HS, Bialer M. Br. J. Pharmacol. 2003; 139: 755
    • 5b Gupta RC, Win T, Bittner S. Curr. Med. Chem. 2005; 12: 2021
    • 6a Molina E, Diaz HG, Gonzalez MP, Rodriguez E, Uriarte E. J. Chem. Inf. Comput. Sci. 2004; 44: 515
    • 6b Yosefdad S, Valadbeigi Y, Bayat M. J. Mol. Struct. 2020; 1200: 127105
    • 7a Hall IH, Wong OT, Scovill JP. Biomed. Pharmacother. 1995; 49: 251
    • 7b Lee N.-J, Jeong I.-C, Cho M.-Y, Jeon C.-W, Yun B.-CY, Kim Y.-O, Kim S.-H, Chung I. Eur. Polym. J. 2006; 42: 3352
    • 7c Kok SH. L, Gambari R, Chui CH, Yuen CW. M, Lin E, Wong RS. M, Lau FY, Cheng GY. M, Lam WS, Chan SH, Lam KH, Cheng CH, Lai PB. S, Yu MW. Y, Cheung F, Tang JC. O, Chan AS. C. Biorg. Med. Chem. 2008; 16: 3626
    • 7d Belluti S, Orteca G, Semeghini V, Rigillo G, Parenti F, Ferrari E, Imbriano C. Int. J. Mol. Sci. 2019; 20: 28
    • 7e Philoppes JN, Lamie PF. Bioorg. Chem. 2019; 89: 102978
    • 8a Wang Z, Zhang Y, Zhang H, Harrington PB, Chen H. J. Am. Soc. Mass. Spectrom. 2012; 23: 520
    • 8b Kushwaha N, Kaushik D. J. Appl. Pharm. Sci. 2016; 6: 60330 , DOI: DOI: 10.7324/japs.2016.60330.
    • 8c Quinn RK, Koenst ZA, Michalak SE, Schmidt Y, Szklarski AR, Flores AR, Nam S, Horne DA, Vanderwal CD, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
    • 8d Milan M, Carboni G, Salamone M, Costas M, Bietti M. ACS Catal. 2017; 7: 5903
    • 8e Barsu N, Kalsi D, Sundararaju B. Catal. Sci. Technol. 2018; 8: 5963
    • 9a Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 9b Malins LR. Curr. Opin. Chem. Biol. 2018; 46: 25
    • 9c Mangubat-Medina AE, Martin SC, Hanaya K, Ball ZT. J. Am. Chem. Soc. 2018; 140: 8401
    • 9d Willis MC, McNally SJ, Beswick PJ. Angew. Chem. Int. Ed. 2004; 43: 340
    • 10a Rahman MM, Buchspies J, Szostak M. Catalysts 2019; 9: 129
    • 10b Li GC, Ma SY, Szostak M. Trends Chem. 2020; 2: 914
    • 10c Meng GR, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
  • 11 García-Cárceles J, Bahou KA, Bower JF. ACS Catal. 2020; 10: 12738
    • 12a Hughes AK, Wade K. Coord. Chem. Rev. 2000; 197: 191
    • 12b Dobson GR. Inorg. Chem. 1980; 19: 1413
    • 13a Stephan MS, Teunissen A, Verzijl GK. M, de Vries JG. Angew. Chem. Int. Ed. 1998; 37: 662
    • 13b Goossen LJ, Ghosh K. Angew. Chem. Int. Ed. 2001; 40: 3458
  • 14 Kajita Y, Matsubara S, Kurahashi T. J. Am. Chem. Soc. 2008; 130: 6058
  • 15 Fujiwara K, Kurahashi T, Matsubara S. Org. Lett. 2010; 12: 4548
  • 16 Shiba T, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2013; 135: 13636
    • 17a Samanta PK, Biswas P. J. Org. Chem. 2019; 84: 3968
    • 17b Meng YY, Si XJ, Song YY, Zhou HM, Xu F. Chem. Commun. 2019; 55: 9507
    • 17c Li C, Li P, Yang J, Wang L. Chem. Commun. 2012; 48: 4214
    • 18a Xu F, Zhu WJ, Wang J, Ma Q, Shen LJ. Org. Biomol. Chem. 2020; 18: 8219
    • 18b Min XT, Ji DW, Guan YQ, Guo SY, Hu YC, Wan B, Chen QA. Angew. Chem. Int. Ed. 2021; 60: 1583
    • 18c Zeng R, Chen P.-h, Dong G. ACS Catal. 2016; 6: 969
    • 19a Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
    • 19b Fu L.-Y, Ying J, Wu X.-F. J. Org. Chem. 2019; 84: 12648
    • 19c Gruener B, Sicha V, Hnyk D, Londesborough MG. S, Cisarova I. Inorg. Chem. 2015; 54: 3148
    • 19d Tonigold M, Lu Y, Mavrandonakis A, Puls A, Staudt R, Moellmer J, Sauer J, Volkmer D. Chem. Eur. J. 2011; 17: 8671
    • 19e Cabrero-Antonino JR, Adam R, Papa V, Holsten M, Junge K, Beller M. Chem. Sci. 2017; 8: 5536
    • 20a Zheng C, Wang Y, Xu Y, Chen Z, Chen G, Liang SH. Org. Lett. 2018; 20: 4824
    • 20b Hu AG, Lin WB. Org. Lett. 2005; 7: 455
  • 21 Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
  • 22 Min XT, Ji DW, Zheng H, Chen BZ, Hu YC, Wan B, Chen QA. Org. Lett. 2020; 22: 3386
  • 23 Tsuji J, Ohno K. Tetrahedron Lett. 1965; 44: 3969
    • 24a Wang C, Li X, Wu F, Wan B. Angew. Chem. Int. Ed. 2011; 50: 7162
    • 24b Neumeier M, Chakraborty U, Schaarschmidt D, de la Pena O’Shea V, Perez-Ruiz R, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2020; 59: 13473
  • 25 Takeuchi M, Kurahashi T, Matsubara S. Chem. Lett. 2012; 41: 1566
  • 26 Havlik SE, Simmons JM, Winton VJ, Johnson JB. J. Org. Chem. 2011; 76: 3588
  • 27 DeGlopper KS, Fodor SK, Endean TB. D, Johnson JB. Polyhedron 2016; 114: 393
  • 28 Heyboer EM, Johnson RL, Kwiatkowski MR, Pankratz TC, Yoder MC, DeGlopper KS, Ahlgrim GC, Dennis JM, Johnson JB. J. Org. Chem. 2020; 85: 3757
  • 29 Yuan YC, Kamaraj R, Bruneau C, Labasque T, Roisnel T, Gramage-Doria R. Org. Lett. 2017; 19: 6404
  • 30 D’Alterio MC, Yuan Y.-C, Bruneau C, Talarico G, Gramage-Doria R, Poater A. Catal. Sci. Technol. 2020; 10: 180