Synthesis 2022; 54(12): 2787-2798
DOI: 10.1055/a-1750-3080
feature

Dehydrative and Decarboxylative Coupling of Alkynoic Acids with Allylic Alcohols

Ju Qiu
,
Jingwei Hou
,
Zuolian Sun
,
Peizhong Xie
We gratefully acknowledge financial support from the National Natural Science Foundation of China (21702108), the Natural Science Foundation of Jiangsu Province, China (BK20211257, BK20160977), and the Six Talent Peaks Project in Jiangsu Province (YY-033).


Dedicated to Prof. You Huang on the occasion of his 60th birthday

Abstract

A direct dehydroxylative and decarboxylative coupling between a large number of allylic alcohols and alkynoic acids was realized affording 1,4-enyne motifs in high efficiency. In this reaction, calcium-promoted C–OH bond cleavage was crucial, which facilitated the sequential ­decarboxylation, and thus enabled the palladium-catalyzed allyl­–alkynyl coupling, which occurred in an environmentally benign manner tolerating a wide variety of functional groups. This protocol has been successfully used in preparing anticancer active rooperol derivatives in gram scale.

Supporting Information



Publication History

Received: 11 November 2021

Accepted after revision: 25 January 2022

Accepted Manuscript online:
25 January 2022

Article published online:
08 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 1b Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 1c Hu RM, Han DY, Li N, Huang J, Feng Y, Xu DZ. Angew. Chem. Int. Ed. 2020; 59: 3876
    • 1d Jiang J, Xiao F, He W.-M, Wang L. Chin. Chem. Lett. 2021; 32: 1637
    • 1e Chen X, Xiao F, He W. Org. Chem. Front. 2021; 8: 5206
    • 3a Zhang W.-W, Zhang X.-G, Li J.-H. J. Org. Chem. 2010; 75: 5259
    • 3b Yang Y, Lim YH, Robins EG, Johannes CW. RSC Adv. 2016; 6: 72810
  • 4 Chang S, Liu Y, Yin SZ, Dong LL, Wang JF. New J. Chem. 2019; 43: 5357
  • 5 Moon J, Jeong M, Nam H, Ju J, Moon JH, Jung HM, Lee S. Org. Lett. 2008; 10: 945

    • For selected recent examples concerning palladium-catalyzed versions, see:
    • 6a Mousa AH, Fleckhaus A, Kondrashov M, Wendt OF. J. Organomet. Chem. 2017; 845: 157
    • 6b Reddy PV, Srinivas P, Annapurna M, Bhargava S, Wagler J, Mirzadeh N, Kantam ML. Adv. Synth. Catal. 2013; 355: 705
    • 6c Li X, Yang F, Wu Y. J. Org. Chem. 2013; 78: 4543
    • 6d Li X, Yang F, Wu Y. RSC Adv. 2014; 4: 13738
    • 6e Yang Y, Lim YH, Robins EG, Johannes CW. RSC Adv. 2016; 6: 72810
    • 6f Moon J, Jang M, Lee S. J. Org. Chem. 2009; 74: 1403
    • 6g Kim H, Lee PH. Adv. Synth. Catal. 2009; 351: 2827
    • 6h Tartaggia S, Lucchi OD, Gooßen LJ. Eur. J. Org. Chem. 2012; 1431
  • 7 For a recent example concerning nickel-catalyzed version, see: Son Y, Kim H.-S, Lee J.-H, Jang J, Lee C.-F, Lee S. Tetrahedron Lett. 2017; 58: 1413

    • For selected recent examples concerning copper-catalyzed versions, see:
    • 8a Pan D.-L, Zhang C, Ding S.-T, Jiao N. Eur. J. Org. Chem. 2011; 4751
    • 8b Park J, Jung D, Kim H.-S, Na K, Lee S. Catal. Commun. 2017; 99: 83
    • 8c Zhao D.-B, Gao C, Su X.-Y, He Y.-Q, You J.-S, Xue Y. Chem. Commun. 2010; 46: 9049
    • 8d Wang X, Wang Z, Xie Z, Zhang G, Zhang W, Gao Z. RSC Adv. 2016; 6: 109296
    • 8e Kumar MR, Irudayanathan FM, Moon JH, Lee S. Adv. Synth. Catal. 2013; 355: 3221
    • 8f Li TY, Qu X.-M, Zhu Y, Sun P, Yang H.-L, Shan Y.-Q, Zhang H.-X, Liu DF, Zhang X, Mao J.-C. Adv. Synth. Catal. 2011; 353: 2731

      For selected examples, see;
    • 9a Yu S, Cho E, Kim J, Lee S. J. Org. Chem. 2017; 82: 11150
    • 9b Bhojane JM, Jadhav VG, Nagarkar JM. New J. Chem. 2017; 41: 6775
    • 9c Balsane KE, Gund SH, Nagarkar JM. Catal. Commun. 2018; 104: 78
    • 9d Howard A, Klemann S, Kolling S, Little K, Plasek E, Kalyani D. Synthesis 2019; 51: 1603
    • 10a Hwang J, Park K, Choe J, Min H, Song KH, Lee S. J. Org. Chem. 2014; 79: 3267
    • 10b Tummanapalli S, Muthuraman P, Vangapandu DN, Shanmugavel G, Kambampati S, Lee KW. RSC Adv. 2015; 5: 49392

      For some selected recent literature, see:
    • 11a Chen Z.-M, Nervig CS, Deluca RJ, Sigman MS. Angew. Chem. Int. Ed. 2017; 56: 6651
    • 11b Bernhard Y, Thomson B, Ferey V, Sauthier M. Angew. Chem. Int. Ed. 2017; 56: 7460
    • 11c Schlepphorst C, Maji B, Glorius F. ACS Catal. 2016; 6: 4184
    • 11d Kita Y, Kavthe RD, Oda H, Mashima K. Angew. Chem. Int. Ed. 2016; 55: 1098
    • 11e Suzuki Y, Sun B, Sakata K, Yoshino T, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 9944
    • 11f Xu Q, Chen J, Tian H, Yuan X, Li S, Zhou C, Liu J. Angew. Chem. Int. Ed. 2014; 53: 225
    • 11g Walton JW, Williams JM. J. Angew. Chem. Int. Ed. 2012; 51: 12166
    • 11h Jin J, MacMillan DW. C. Nature 2015; 525: 87
    • 11i Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
  • 12 Masuda Y, Ito M, Murakami M. Chem. Lett. 2021; 50: 1030

    • 1,4-Enynes served as building block in organic synthesis, see:
    • 13a Wu L.-J, Song R.-J, Luo S, Li J.-H. Angew. Chem. Int. Ed. 2018; 57: 13308
    • 13b Pradhan TR, Kim HW, Park JK. Angew. Chem. Int. Ed. 2018; 57: 9930
    • 13c Almasalma AA, Mejia E. Chem. Eur. J. 2018; 24: 12269
    • 13d Cui X.-Y, Ge Y.-C, Tan SM, Jiang H, Tan D, Lu Y, Lee R, Tan C.-H. J. Am. Chem. Soc. 2018; 140: 8448
    • 13e Yang S, Rui K.-H, Tang X.-Y, Xu Q, Shi M. J. Am. Chem. Soc. 2017; 139: 5957

      For selected examples of biologically and pharmaceutically active molecules involving 1,4-enynes, see:
    • 14a Drewes S, Liebenberg RW. U. S. Patent 4652636, 1987
    • 14b Liebenberg RW, Bouic PB, Kruger PJ. D, de Vos Albrecht CF. U. S. Patent 5609874, 1997
    • 14c Daniewski WM, Danikiewicz W, Gołębiewski WM, Gucma M, Łysik A, Grodner J, Przybysz E. Nat. Prod. Commun. 2012; 7: 917

      For selected examples for preparing 1,4-enynes, see:
    • 15a Rayabarapu DK, Tunge JA. J. Am. Chem. Soc. 2005; 127: 13510
    • 15b Choe J, Yang J, Park K, Palani T, Lee S. Tetrahedron Lett. 2012; 53: 6908
    • 15c Chen H, Deng M.-Z. J. Organomet. Chem. 2000; 603: 189
    • 15d Leadbeater NE. J. Org. Chem. 2001; 66: 7539
    • 15e Bieber LW, da Silva MF. Tetrahedron Lett. 2007; 48: 7088
    • 15f Kumar GG. K. S. N, Laali KK. Org. Biomol. Chem. 2012; 10: 7347
    • 15g Ma S, Zhang A. J. Org. Chem. 2002; 67: 2287
    • 15h Nishikawa T, Isobe M. Biosci. Biotechnol. Biochem. 1999; 63: 238
    • 15i Kiyotsuka Y, Kobayashi Y. J. Org. Chem. 2009; 74: 7489
    • 16a Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2526
    • 16b Meng J, Fan L.-F, Han Z.-Y, Gong L.-Z. Chem 2018; 4: 1047

      For some selected examples, see:
    • 17a Xie P, Li S, Liu Y, Cai X, Wang J, Yang X, Loh T.-P. Org. Lett. 2020; 22: 31
    • 17b Xie P, Sun Z, Li S, Zhang L, Cai X, Fu W, Yang X, Liu Y, Wo X, Loh T.-P. Org. Lett. 2020; 22: 1599
    • 17c Xie P, Sun Z, Li S, Cai X, Qiu J, Fu W, Gao C, Wu S, Yang X, Loh T.-P. Org. Lett. 2020; 22: 4893
    • 17d Xie P, Wang J, Liu Y, Fan J, Wo X, Fu W, Sun Z, Loh T.-P. Nat. Commun. 2018; 9: 1321
  • 18 Pitzer L, Schäfers F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 8572