Synthesis
DOI: 10.1055/a-1742-2005
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Electrocyclization and Unexpected Reactions of Non-Stabilized α,β:γ,δ-Unsaturated Azomethine Ylides: Experimental and Theoretical Studies

István G. Molnár
a   Servier Research Institute of Medicinal Chemistry, 7 Záhony utca., 1031 Budapest, Hungary
,
Zoltán Mucsi
b   Femtonics Research Institute, 59 Tűzoltó utca, 1094 Budapest, Hungary
c   Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary
,
Ervin Kovács
b   Femtonics Research Institute, 59 Tűzoltó utca, 1094 Budapest, Hungary
d   Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117 Budapest, Hungary
,
Miklós Nyerges
a   Servier Research Institute of Medicinal Chemistry, 7 Záhony utca., 1031 Budapest, Hungary
› Author Affiliations
This project was supported by National Research, Development and Innovation Fund of Hungary, financed under the (OTKA PD128612) funding scheme. The authors are grateful to the Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/799/21/7), the ÚNKP-21-5 new National Excellence Program, NVKP-16 (1-2016-0043), KFI-16 (1-2016-0177), KFI-18 (00097) and VKE-18 (00032) of the Ministry for Innovation and Technology from the Source of the National Research, Development and Innovation Fund for financial support.


Abstract

Versatile, two-step syntheses of dihydrodibenzo[c,e]azepines, carbazole derivatives, and other alkaloid-type drug-like scaffolds by in situ generated azomethine ylide-induced intramolecular electrocyclization reaction from commercially available materials are presented. The reaction mechanisms of transition-metal-free carbon–carbon bond formation and the role of the kinetic control, resulting in the good regioselectivity, were confirmed by theoretical calculations.

Supporting Information



Publication History

Received: 25 November 2021

Accepted after revision: 17 January 2022

Publication Date:
17 January 2022 (online)

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews on 1,5- and 1,7-electrocyclizations of conjugated 1,3-dipoles, see:
    • 1a Nyerges M, Tóth J, Groundwater PW. Synlett 2008; 1269
    • 1b Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2006; 2873
    • 1c Groundwater PW, Nyerges M. Adv. Heterocycl. Chem. 1999; 73: 97
    • 1d Zecchi G. Synthesis 1991; 181
    • 1e Huisgen R. Angew. Chem., Int. Ed. Engl. 1980; 19: 947
    • 1f Taylor EC, Turchi IJ. Chem. Rev. 1979; 79: 181
    • 2a Shun-ichi N, Yasumasa H, Tetsuhiro N. Tetrahedron Lett. 2018; 59: 760
    • 2b Pompeo MM, Cheah JH, Movassaghi M. J. Am. Chem. Soc. 2019; 141: 14411
    • 2c Chaturvedula PV, Mercer SE, Fang H, Han X, Luo G, Dubowchik GM, Poindexter GS. US Pat. Appl. Publ US 20070259851 A1, 2007
    • 2d Nguyen TN. T, Saleem RS. Z, Luderer MJ, Hovde S, Henry RW, Tepe JJ. ACS Chem. Biol. 2012; 7: 172
  • 4 Tóth J, Dancsó A, Blaskó G, Tőke L, Groundwater PW, Nyerges M. Tetrahedron 2006; 62: 5725
  • 5 Nyerges M, Virányi A, Tóth J, Blaskó G, Tőke L. Synthesis 2006; 1273
    • 6a Nyerges M, Pintér Á, Virányi A, Bitter I, Tőke L. Tetrahedron Lett. 2005; 46: 377
    • 6b Urbina K, Tresp D, Sipps K, Szostak M. Adv. Synth. Catal. 2021; 363: 2723
    • 7a Grigg R, Thianpatanagul S. J. Chem. Soc., Chem. Commun. 1984; 180
    • 7b Joucla M, Mortier J. J. Chem. Soc., Chem. Commun. 1985; 1566
    • 7c Tsuge O, Kanemasa S, Ohe M, Takenaka S. Bull. Chem. Soc. Jpn. 1987; 60: 4079
    • 8a Frolova EP, Akhvlediani RN, Suvorov NN. Khim. Geterotsikl. Soed. 1982; 10: 1358
    • 8b St-Ruf G, Hieu HT. Arzneim.-Forsch. 1975; 25: 66
    • 8c Buu-Hoi NP, Saint-Ruf G, Deschamps D, Bigot P, Hieu HT. J. Chem. Soc. C 1971; 2606
  • 9 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01 . Gaussian, Inc.; Wallingford CT: 2016
  • 10 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
    • 11a Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
    • 11b Vivanco S, Lecea B, Arrieta A, Prieto P, Morao I, Linden A, Cossío FP. J. Am. Chem. Soc. 2000; 122: 6078
  • 12 Vivanco S, Lecea B, Arrieta A, Prieto P, Morao I, Linden A, Cossío FP. J. Am. Chem. Soc. 2000; 122: 6078
  • 13 Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR. Chem. Rev. 2005; 105: 3842
  • 14 Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995
    • 15a Kovács E, Faigl F, Mucsi Z. J. Org. Chem. 2020; 85: 11226
    • 15b Chiovini B, Pálfi D, Majoros M, Juhász G, Szalay G, Katona G, Szőri M, Frigyesi O, Lukácsné Haveland C, Szabó G, Erdélyi F, Máté Z, Szadai Z, Madarász M, Dékány M, Csizmadia IG, Kovács E, Rózsa B, Mucsi Z. ACS Omega 2021; 6: 15029
    • 15c Kovács E, Cseri L, Jancsó A, Terényi F, Fülöp A, Rózsa B, Galbács G, Mucsi Z. Eur. J. Org. Chem. 2021; 5649
    • 15d Nagy M, Rácz D, Nagy ZL, Nagy T, Fehér PP, Purgel M, Zsuga M, Kéki S. Dyes Pigm. 2016; 133: 445
    • 15e Nagy M, Rácz D, Nagy ZL, Fehér PP, Kalmár J, Fábián I, Kiss A, Zsuga M, Kéki S. Sens. Actuators B: Chem. 2018; 255: 2555