Synlett 2022; 33(10): 939-951
DOI: 10.1055/a-1696-5713
account

Asymmetric Rhodium-Catalyzed Allylic Substitution Reactions with Nitrile-Stabilized Carbanions

Mai-Jan Tom
a   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
,
P. Andrew Evans
a   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
b   Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
› Author Affiliations
We sincerely thank the National Sciences and Engineering Research Council (NSERC) for a Discovery Grant and Queen’s University for generous financial support. NSERC is also thanked for supporting a Tier 1 Canada Research Chair (P.A.E). We acknowledge the Huxiang High-Level Talent Gathering Project from the Science and Technology Department of Hunan Province (Grant No. 2020RC5001). We thank Queen’s University for R. S. McLaughlin Fellowships (M.-J.T.) and the Government of Ontario for a Queen Elizabeth II Graduate Scholarship in Science and Technology (M.-J.T.) and Ontario Graduate Scholarships (M.-J.T.).


Abstract

This Account summarizes our recent work on rhodium-catalyzed allylic alkylation reactions with nitrile-stabilized carbanions. Despite the challenges associated with employing nitrile-stabilized nucleophiles in transition-metal-catalyzed reactions, we have developed enantiospecific and enantioselective allylic alkylation reactions. Notably, these novel reactions permit expedient and selective access to an array of acyclic ternary and quaternary stereogenic centers present in important biologically active and functional molecules.

1 Introduction

2 Enantiospecific Allylic Alkylation Reactions with Nitrile-Stabilized Anions

3 Enantioselective Allylic Alkylation Reactions with Nitrile-Stabilized Anions

4 Conclusion



Publication History

Received: 19 August 2021

Accepted after revision: 15 November 2021

Accepted Manuscript online:
15 November 2021

Article published online:
24 May 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 1b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902

      For the pK a of nitriles, see:
    • 2a Bordwell FG, Fried HE. J. Org. Chem. 1981; 46: 4327
    • 2b Bordwell FG. Acc. Chem. Res. 1988; 21: 456
    • 2c Judka M, Wojtasiewicz A, Danikiewicz W, Mąkosza M. Tetrahedron 2007; 63: 8902
  • 3 López R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
  • 4 Fleming FF, Shook BC. Tetrahedron 2002; 58: 1
    • 5a Prober M. J. Am. Chem. Soc. 1956; 78: 2274
    • 5b Krüger CR, Rochow EG. Angew. Chem. Int. Ed. Engl. 1963; 2: 617
    • 5c Watt DS. Synth. Commun. 1974; 4: 127
    • 5d Kawakami Y, Hisada H, Yamashita Y. Tetrahedron Lett. 1985; 26: 5835
    • 5e Enders D, Kirchhoff J, Gerdes P, Mannes D, Raabe G, Runsink J, Boche G, Marsch M, Ahlbrecht H, Sommer H. Eur. J. Org. Chem. 1998; 63
    • 6a Boche G. Angew. Chem. Int. Ed. Engl. 1989; 28: 277
    • 6b Purzycki M, Liu W, Hilmersson G, Fleming FF. Chem. Commun. 2013; 49: 4700

      For examples of nitriles coordinating to rhodium, see:
    • 7a Sawamura M, Sudoh M, Ito Y. J. Am. Chem. Soc. 1996; 118: 3309
    • 7b Evans PA, Kennedy LJ. Tetrahedron Lett. 2001; 42: 7015
  • 8 Crawley ML. In Science of Synthesis: Stereoselective Synthesis 3 . Evans PA. Thieme; Stuttgart: 2011: 403
  • 9 Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
  • 10 Evans PA, Leahy DK. Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005. Chap. 10, 191-214
  • 11 Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
  • 12 Wright TB, Evans PA. Chem. Rev. 2021; 121: 9196
  • 13 The term conservation of enantiomeric excess (cee) = (ee of product ÷ ee of starting material) × 100. For details, please see: Evans PA, Robinson JE, Nelson JD. J. Am. Chem. Soc. 1999; 121: 6761
  • 14 Enantioselective enolate alkylation review: Stoltz BM, Mohr JT. Science of Synthesis, Vol. 3. De Vries JG, Molander GA, Evans PA. Thieme; Stuttgart: 2010: 567
  • 16 Seebach D. Angew. Chem. Int. Ed. Engl. 1979; 18: 239
  • 17 Kurono N, Yamaguchi M, Suzuki K, Ohkuma T. J. Org. Chem. 2005; 70: 6530
  • 18 Evans PA, Oliver S, Chae J. J. Am. Chem. Soc. 2012; 134: 19314
  • 19 Evans PA, Oliver S. Org. Lett. 2013; 15: 5626
  • 20 Turnbull BW. H, Oliver S, Evans PA. J. Am. Chem. Soc. 2015; 137: 15374
  • 21 Majhi J, Turnbull BW. H, Ryu H, Park J, Baik M.-H, Evans PA. J. Am. Chem. Soc. 2019; 141: 11770
  • 22 Turnbull BW. H, Chae J, Oliver S, Evans PA. Chem. Sci. 2017; 8: 4001

    • For select examples, see:
    • 23a Breitler S, Carreira EM. J. Am. Chem. Soc. 2015; 137: 5296
    • 23b Hethcox JC, Shockley SE, Stoltz BM. Org. Lett. 2017; 19: 1527
  • 24 Yoshida M, Kijima M, Akita M, Beppu T. J. Biol. Chem. 1990; 265: 17174
    • 25a Pappo R, Allen DS, Lemieux RU, Johnson WS. J. Org. Chem. 1956; 21: 478
    • 25b Yu W, Mei Y, Kang Y, Hua Z, Jin Z. Org. Lett. 2004; 6: 3217
  • 26 Markiewicz JT, Schauer DJ, Löfstedt J, Corden SJ, Wiest O, Helquist P. J. Org. Chem. 2010; 75: 2061
  • 27 Reeves JT, Fandrick DR, Tan Z, Song JJ, Lee H, Yee NK, Senanayake CH. Org. Lett. 2010; 12: 4388
  • 28 Bai D.-C, Liu X.-Y, Li H, Ding C.-H, Hou X.-L. Chem. Asian J. 2017; 12: 212
  • 29 Matsunami A, Takizawa K, Sugano S, Yano Y, Sato H, Takeuchi R. J. Org. Chem. 2018; 83: 12239
  • 30 Seyferth D, Mammarella RE. J. Organomet. Chem. 1978; 156: 279
  • 31 Tom M.-J, Evans PA. J. Am. Chem. Soc. 2020; 142: 11957

    • For selected examples of (trimethylsilyl)acetonitrile undergoing 1,4-addition in the absence of copper, see:
    • 32a Tomioka K, Koga K. Tetrahedron Lett. 1984; 25: 1599
    • 32b Paquette LA, Friedrich D, Pinard E, Williams JP, St Laurent D, Roden BA. J. Am. Chem. Soc. 1993; 115: 4377
    • 32c Yuan C, Chang C.-T, Axelrod A, Siegel D. J. Am. Chem. Soc. 2010; 132: 5924
  • 33 Palomo C, Aizpurua JM, López MC, Lecea B. J. Chem. Soc., Perkin Trans. 1 1989; 1692
    • 34a Fadel A, Canet J.-L, Salaün J. Tetrahedron: Asymmetry 1993; 4: 27
    • 34b Kametani T, Kawamura K, Tsubuki M, Honda T. Chem. Pharm. Bull. 1985; 33: 4821
    • 34c Kumar R, Halder J, Nanda S. Tetrahedron 2017; 73: 809
  • 35 Trost BM, Miller JR, Hoffman CM. J. Am. Chem. Soc. 2011; 133: 8165

    • For recent reviews, please see:
    • 36a Cheng Q, Tu H-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
    • 36b Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
  • 37 Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581
  • 38 Evans PA, Clizbe EA, Lawler MJ, Oliver S. Chem. Sci. 2012; 3: 1835
    • 39a Kaneti J, von Ragué Schleyer P, Clark T, Kos AJ, Spitznagel GW, Andrade JG, Moffat JB. J. Am. Chem. Soc. 1986; 108: 1481
    • 39b Koch R, Wiedel B, Anders E. J. Org. Chem. 1996; 61: 2523
    • 39c Strzalko T, Seyden-Penne J, Wartski L, Corset J, Castella-Ventura M, Froment F. J. Org. Chem. 1998; 63: 3287
    • 39d Carlier PR, Madura JD. J. Org. Chem. 2002; 67: 3832
    • 40a Das R, Wilkie CA. J. Am. Chem. Soc. 1972; 94: 4555
    • 40b Abbotto A, Bradamante S, Pagani GA. J. Org. Chem. 1993; 58: 449
    • 40c Carlier PR, Lucht BL, Collum DB. J. Am. Chem. Soc. 1994; 116: 11602
    • 40d Carlier PR, Lo CW.-S. J. Am. Chem. Soc. 2000; 122: 12819
    • 41a Boche G, Marsch M, Harms K. Angew. Chem. Int. Ed. Engl. 1986; 25: 373
    • 41b Boche G, Harms K, Marsch M. J. Am. Chem. Soc. 1988; 110: 6925
    • 41c Zarges W, Marsch M, Harms K, Boche G. Angew. Chem. Int. Ed. Engl. 1989; 28: 1392
    • 41d Langlotz I, Marsch M, Harms K, Boche G. Z. Kristallogr. – New Cryst. Struct. 1999; 214: 509
    • 41e Sott R, Granander J, Hilmersson G. J. Am. Chem. Soc. 2004; 126: 6798
  • 42 Denmark SE, Wilson TW. Angew. Chem. Int. Ed. 2012; 51: 9980
  • 43 Turnbull BW. H, Evans PA. J. Am. Chem. Soc. 2015; 137: 6156
  • 44 Wright TB, Evans PA. J. Am. Chem. Soc. 2016; 138: 15303
  • 45 Rasmussen K, Calligaro DO, Czachura JF, Dreshfield-Ahmad LJ, Evans DC, Hemrick-Luecke SK, Kallman MJ, Kendrick WT, Leander JD, Nelson DL, Overshiner CD, Wainscott DB, Wolff MC, Wong DT, Branchek TA, Zgombick JM, Xu Y.-c. J. Pharmacol. Exp. Ther. 2000; 294: 688
    • 46a Eichelbaum M, Mikus G, Vogelgesang B. Br. J. Clin. Pharmacol. 1984; 17: 453
    • 46b Longstreth JA. Verapamil . In Drug Stereochemistry. Analytical Methods and Pharmacology, 2nd ed. . Wainer IW. Marcel Dekker; New York: 1993: 315-336
    • 46c Busse D, Templin S, Mikus G, Schwab M, Hofmann U, Eichelbaum M, Kivistö KT. Eur. J. Clin. Pharmacol. 2006; 62: 613
  • 47 Tom M.-J, Turnbull BW. H, Evans PA. Synthesis 2020; 52: 2185
  • 48 Rucker RP, Whittaker AM, Dang H, Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
  • 49 Jiao Z, Chee KW, Zhou J. J. Am. Chem. Soc. 2016; 138: 16240
    • 50a Ahlbrecht H, Bonnet G, Enders D, Zimmermann G. Tetrahedron Lett. 1980; 21: 3175
    • 50b Fang J.-M, Chang C.-J. J. Chem. Soc., Chem. Commun. 1989; 1787
    • 50c Chang C.-J, Fang J.-M, Liao L.-F. J. Org. Chem. 1993; 58: 1754
  • 51 Hoppe D, Hense T. Angew. Chem. Int. Ed. Engl. 1997; 36: 2282
    • 52a Lesur B, Toye J, Chantrenne M, Ghosez L. Tetrahedron Lett. 1979; 20: 2835
    • 52b Schwarz JB, Devine PN, Meyers AI. Tetrahedron 1997; 53: 8795
    • 53a Weisenburger GA, Beak P. J. Am. Chem. Soc. 1996; 118: 12218
    • 53b Seppi M, Kalkofen R, Reupohl J, Fröhlich R, Hoppe D. Angew. Chem. Int. Ed. 2004; 43: 1423
  • 54 Wright TB, Turnbull BW. H, Evans PA. Angew. Chem. Int. Ed. 2019; 58: 9886