Synlett 2022; 33(08): 721-727
DOI: 10.1055/a-1696-4418
account

Reactions of Sulfoxides with Benzynes

Caiwen Wan
a   School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. of China
,
Jiarong Shi
a   School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. of China
,
Yang Li
a   School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. of China
b   College of Chemistry, Jilin University, Changchun 130012, P. R. of China
› Author Affiliations
The authors gratefully acknowledge the support of this work provided by the Basic and Frontier Research Project of Chongqing (cstc2019jcyj-bshX0021) and NSFC (21901025, 21971028, 21772017).


Abstract

Sulfoxides are important organic synthons that have been used in a variety of transformations. In this account, we focus on advances in the reaction of sulfoxides with benzynes, which can be divided into two types: benzyne ortho-difunctionalization and benzyne multifunctionalization.

1 Introduction

2 Benzyne ortho-Difunctionalization

3 Benzyne Multifunctionalization

4 Conclusion



Publication History

Received: 29 October 2021

Accepted after revision: 13 November 2021

Accepted Manuscript online:
13 November 2021

Article published online:
21 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 2a Smith LH, Coote SC, Sneddon HF, Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832
    • 2b Yorimitsu H. Chem. Rec. 2017; 17: 1156
    • 3a Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 9842
    • 3b Tian Z.-Y, Hu Y.-T, Teng H.-B, Zhang C.-P. Tetrahedron Lett. 2018; 59: 299
    • 4a García-López JA, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
    • 4b Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
    • 4c Fluegel LL, Hoye TR. Chem. Rev. 2021; 121: 2413
    • 4d Shi J, Li L, Li Y. Chem. Rev. 2021; 121: 3892
    • 4e Modern Aryne Chemistry. Biju AT. Wiley-VCH; Weinheim: 2021
    • 4f Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 12: 1211
  • 5 Asamdi M, Chikhalia KH. Asian J. Org. Chem. 2017; 6: 1331
    • 6a Cram DJ, Day AC. J. Org. Chem. 1966; 31: 1227
    • 6b Birch AJ, Chamberlain KB, Oloyede SS. Aust. J. Chem. 1971; 24: 2179
    • 6c Bradshaw JS, Hales RH. J. Org. Chem. 1971; 36: 318
    • 6d Kano S, Yokomatsu T, Shibuya S. Chem. Pharm. Bull. 1975; 23: 1098
    • 6e Scamehorn RG, Bunnett JF. J. Org. Chem. 1977; 42: 1449
    • 6f Kim KS, Ha SM, Kim JY, Kim K. J. Org. Chem. 1999; 64: 6483
  • 7 Liu F.-L, Chen J.-R, Zou Y.-Q, Wei Q, Xiao W.-J. Org. Lett. 2014; 16: 3768
    • 8a Hazarika H, Neog K, Sharma A, Das B, Gogoi P. J. Org. Chem. 2019; 84: 5846
    • 8b Hazarika H, Gogoi P. Org. Biomol. Chem. 2020; 18: 2727
  • 9 Li H.-Y, Xing L.-J, Lou M.-M, Wang H, Liu R.-H, Wang B. Org. Lett. 2015; 17: 1098
  • 10 Lou M.-M, Wang H, Song L, Liu H.-Y, Li Z.-Q, Guo X.-S, Zhang F.-G, Wang B. J. Org. Chem. 2016; 81: 5915
  • 11 Li Y, Studer A. Org. Lett. 2017; 19: 666
  • 12 Li X, Sun Y, Huang X, Zhang L, Kong L, Peng B. Org. Lett. 2017; 19: 838
  • 13 Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 5521
    • 14a Yoshida S, Yano T, Misawa Y, Sugimura Y, Igawa K, Shimizu S, Tomooka K, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14071
    • 14b Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Chem. Lett. 2018; 47: 825
  • 15 Chen D.-L, Sun Y, Chen M, Li X, Zhang L, Huang X, Bai Y, Luo F, Peng B. Org. Lett. 2019; 21: 3986
  • 16 Ritts CB, Hoye TR. J. Am. Chem. Soc. 2021; 143: 13501
  • 18 Li Y, Qiu D, Gu R, Wang J, Shi J, Li Y. J. Am. Chem. Soc. 2016; 138: 10814
  • 19 Shi J, Li L, Shan C, Wang J, Chen Z, Gu R, He J, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 2178
  • 20 Shi J, Li L, Shan C, Chen Z, Dai L, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 10530
  • 21 Qiu D, Shi J, Guo Q, Xu Q, Li B, Li Y. J. Am. Chem. Soc. 2018; 140: 13214