CC BY 4.0 · Synthesis 2022; 54(05): 1261-1271
DOI: 10.1055/a-1675-8404
short review

Hypervalent Bromine(III) Compounds: Synthesis, Applications, Prospects

Bethan Winterson
,
Tuhin Patra
,
Thomas Wirth
We thank the Engineering and Physical Sciences Research Council (EPSRC) (Ph.D. studentship to B.W. and postdoctoral fellowship to T.P.) for generous financial support.


Abstract

Hypervalent compounds play a prominent role in homogeneous oxidation catalysis. Despite the higher reactivity of hypervalent bromine compounds when compared to their isoelectronic iodine analogues, the corresponding λ3-bromanes are much less explored. This can be attributed to the discernible lack of convenient strategies for their synthesis. This short review highlights the available methods for the synthesis of various organo-λ3-bromanes, with a major focus on the recent developments and reactivities in the last few years. Additionally, limitations and future prospects of hypervalent bromine chemistry are discussed.

1 Introduction

2 Diaryl-λ3-bromanes

3 Dialkyl-λ3-bromanes

4 Dihetero-λ3-bromanes

5 Alkenyl-λ3-bromanes

6 Alkynyl-λ3-bromanes

7 Conclusion and Prospects



Publication History

Received: 28 September 2021

Accepted after revision: 21 October 2021

Accepted Manuscript online:
21 October 2021

Article published online:
30 November 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Willgerodt C. J. Prakt. Chem. 1886; 33: 154
  • 2 Sandin RB, Hay AS. J. Am. Chem. Soc. 1952; 74: 274
    • 3a Ochiai M. Synlett 2009; 159
    • 3b Miyamoto K. Chemistry of Hypervalent Bromine. In Patai’s Chemistry of Functional Groups. Rappoport Z. John Wiley & Sons; Chichester, UK: 2018: 1
  • 4 Musher JI. Angew. Chem. Int. Ed. 1969; 8: 54
    • 5a Hypervalent Iodine Chemistry . Wirth T. Springer-Verlag; Berlin: 2003
    • 5b Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 5c Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester: 2013
    • 5d Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 5e Murphy GK, Racicot L, Carle MS. Asian J. Org. Chem. 2018; 7: 837
  • 6 Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
  • 7 Hartmann C, Meyer V. Ber. Dtsch. Chem. Ges. 1894; 27: 426
  • 8 Dohi T, Kita Y. In Hypervalent Iodine Chemistry, Vol. 373. Wirth T. Springer; Cham: 2016: 1
    • 9a Liu Y, Huang D, Huang J, Maruoka K. J. Org. Chem. 2017; 82: 11865
    • 9b Granados A, Jia Z, del Olmo M, Vallribera A. Eur. J. Org. Chem. 2019; 2812
    • 9c Granados A, Shafir A, Arrieta A, Cossío FP, Vallribera A. J. Org. Chem. 2020; 85: 2142
  • 10 Villo P, Olofsson B. In PATAI’S Chemistry of Functional Groups . Rappoport Z. John Wiley & Sons; Chichester, UK: 2021: 1
  • 11 Oishi R, Segi K, Hamamoto H, Nakamura A, Maegawa T, Miki Y. Synlett 2018; 29: 1465
  • 12 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
  • 13 He Y, Huang L, Xie L, Liu P, Wei Q, Mao F, Zhang X, Huang J, Chen S, Huang C. J. Org. Chem. 2019; 84: 10088
    • 14a Ochiai M, Tada N, Okada T, Sota A, Miyamoto K. J. Am. Chem. Soc. 2008; 130: 2118
    • 14b Ochiai M, Yoshimura A, Miyamoto K, Hayashi S, Nakanishi W. J. Am. Chem. Soc. 2010; 132: 9236
  • 15 Lanzi M, Dherbassy Q, Wencel-Delord J. Angew. Chem. Int. Ed. 2021; 60: 14852
  • 16 Ochiai M, Yoshimura A, Mori T, Nishi Y, Hirobe M. J. Am. Chem. Soc. 2008; 130: 3742
  • 17 Ochiai M, Miyamoto K, Kaneaki T, Hayashi S, Nakanishi W. Science 2011; 332: 448
    • 18a Miyamoto K, Shiro M, Ochiai M. Angew. Chem. Int. Ed. 2009; 48: 8931
    • 18b Yoshida Y, Ishikawa S, Mino T, Sakamoto M. Chem. Commun. 2021; 57: 2519
  • 19 Miyamoto K, Saito M, Tsuji S, Takagi T, Shiro M, Uchiyama M, Ochiai M. J. Am. Chem. Soc. 2021; 143: 9327
  • 20 Yaws CL, Braker W. Matheson Gas Data Book . McGraw-Hill; New York: 2001
  • 21 Frohn H.-J, Giesen M, Welting D, Bardin VV. J. Fluorine Chem. 2010; 131: 922
  • 22 Frohn HJ, Giesen M. J. Fluorine Chem. 1984; 24: 9
    • 23a Nesmeyanov AN, Tolstaya TP, Isaeva LS. Dokl. Akad. Nauk SSSR 1955; 104: 872
    • 23b Nesmeyanov AN, Makarova LG, Tolstaya TP. Tetrahedron 1957; 1: 145
    • 23c Pirkle WH, Koser GF. J. Am. Chem. Soc. 1968; 90: 3598
  • 24 Olah GA, Sakakibara T, Asensio G. J. Org. Chem. 1978; 43: 463
  • 25 Nakajima M, Miyamoto K, Hirano K, Uchiyama M. J. Am. Chem. Soc. 2019; 141: 6499
  • 26 Nesmeyanov AN, Vanchikov AN, Lisichkina IN, Grushin VV, Tolstaia TP. Dokl. Akad. Nauk SSSR 1980; 255: 1386
  • 27 Frohn HJ, Giesen M. J. Fluorine Chem. 1998; 89: 59
  • 28 Nesmeyanov AN, Vanchikov AN, Lisichkina IN, Khrushcheva NS, Tolstaia TP. Dokl. Akad. Nauk SSSR 1980; 254: 652
  • 29 Frohn HJ, Giesen M, Welting D, Henkel G. Eur. J. Solid State Inorg. Chem. 1996; 33: 841
  • 30 Molski MJ, Mollenhauer D, Gohr S, Paulus B, Khanfar MA, Shorafa H, Strauss SH, Seppelt K. Chem. Eur. J. 2012; 18: 6644
  • 31 Nesmeyanov AN, Lisichkina IN, Tolstaya TP. Russ. Chem. Bull. 1973; 22: 2123
  • 32 Hou Z, Zhu Y, Wang Q. Sci. China B 1996; 39: 260
    • 33a Xu S, Zhao K, Gu Z. Adv. Synth. Catal. 2018; 360: 3877
    • 33b Li Q, Zhang M, Zhan S, Gu Z. Org. Lett. 2019; 21: 6374
    • 33c Zhu K, Xu K, Fang Q, Wang Y, Tang B, Zhang F. ACS Catal. 2019; 9: 4951
  • 34 Wang M, Huang Z. Org. Biomol. Chem. 2016; 14: 10185
  • 35 Grushin VV, Kantor MM, Tolstaya TP, Shcherbina TM. Russ. Chem. Bull. 1984; 33: 2130
    • 36a Lubinkowski JJ, McEwen WE. Tetrahedron Lett. 1972; 13: 4817
    • 36b Gurskii ME, Ptitsyna OA, Reutov OA. Russ. Chem. Bull. 1973; 22: 200
  • 37 Olah GA, DeMember JR. J. Am. Chem. Soc. 1969; 91: 2113
  • 38 Olah GA, DeMember JR, Mo YK, Svoboda JJ, Schilling P, Olah JA. J. Am. Chem. Soc. 1974; 96: 884
  • 39 Roberts I, Kimball GE. J. Am. Chem. Soc. 1937; 59: 947
  • 40 Olah GA, Bollinger JM. J. Am. Chem. Soc. 1968; 90: 947
  • 41 Slebocka-Tilk H, Ball RG, Brown RS. J. Am. Chem. Soc. 1985; 107: 4504
  • 42 Nguyen TT, Martin JC. J. Am. Chem. Soc. 1980; 102: 7382
  • 43 Nguyen TT, Wilson SR, Martin JC. J. Am. Chem. Soc. 1986; 108: 3803
  • 44 Sokolovs I, Mohebbati N, Francke R, Suna E. Angew. Chem. Int. Ed. 2021; 60: 15832
  • 45 Ochiai M, Yoshimura A, Miyamoto K. Tetrahedron Lett. 2009; 50: 4792
  • 46 Ochiai M, Yoshimura A, Hoque MM, Okubo T, Saito M, Miyamoto K. Org. Lett. 2011; 13: 5568
  • 47 Hoque MM, Miyamoto K, Tada N, Shiro M, Ochiai M. Org. Lett. 2011; 13: 5428
  • 48 Miyamoto K, Ota T, Hoque MM, Ochiai M. Org. Biomol. Chem. 2015; 13: 2129
  • 49 Ochiai M. Top. Curr. Chem. 2003; 224: 5
    • 50a Ochiai M, Oshima K, Masaki Y. J. Am. Chem. Soc. 1991; 113: 7059
    • 50b Okuyama T, Takino T, Sato K, Ochiai M. J. Am. Chem. Soc. 1998; 120: 2275
    • 50c Ochiai M. J. Organomet. Chem. 2000; 611: 494
  • 51 Prakash GK. S, Bruce MR, Olah GA. J. Org. Chem. 1985; 50: 2405
  • 52 Ochiai M, Nishi Y, Mori T, Tada N, Suefuji T, Frohn HJ. J. Am. Chem. Soc. 2005; 127: 10460
  • 53 Ochiai M, Okubo T, Miyamoto K. J. Am. Chem. Soc. 2011; 133: 3342
  • 54 Ochiai M, Nishi Y, Goto S, Shiro M, Frohn HJ. J. Am. Chem. Soc. 2003; 125: 15304
    • 55a Zhdankin VV, Stang PJ. Tetrahedron 1998; 54: 10927
    • 55b Stang PJ. J. Org. Chem. 2003; 68: 2997
  • 56 Ochiai M, Tada N. Chem. Commun. 2005; 5083
  • 57 Frohn H.-J, Giesen M, Bardin VV. J. Fluorine Chem. 2010; 131: 969