Synthesis 2022; 54(21): 4721-4726
DOI: 10.1055/a-1668-2075
special topic
Asymmetric C–H Functionalization

Synthesis of Ruthenium Catalysts with a Chiral Arene Ligand Derived from Natural Camphor

Roman A. Pototskiy
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
,
Mikhail A. Boym
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
b   National Research University Higher School of Economics, 20 Miasnitskaya Street, Moscow 101000, Russian Federation
,
Yulia V. Nelyubina
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
,
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
b   National Research University Higher School of Economics, 20 Miasnitskaya Street, Moscow 101000, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (grant # 17-73-20144). X-ray diffraction data were collected using the equipment of the Center for molecular composition studies of INEOS RAS with financial support from the Ministry of Science and Higher Education of the Russian Federation.


Abstract

A ruthenium complex with a chiral arene ligand [(camphor–arene)RuCl2]2 was synthesized by the reaction of RuCl3·nH2O with a chiral diene which was obtained from natural camphor in three steps. This complex catalyzed the asymmetric hydrogenation of acetophenone (64–85% ee), but decomposed in catalytic reactions involving C–H activation of 2-phenylpyridine or benzoic acid derivatives.

Supporting Information



Publication History

Received: 28 September 2021

Accepted after revision: 13 October 2021

Accepted Manuscript online:
13 October 2021

Article published online:
22 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ackermann L. Acc. Chem. Res. 2014; 47: 281
  • 2 Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
  • 3 Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
  • 4 Ackermann L, Althammer A, Born R. Synlett 2007; 2833
  • 5 Ackermann L, Althammer A, Born R. Tetrahedron 2008; 64: 6115
  • 6 Loginov DA, Konoplev VE. J. Organomet. Chem. 2018; 867: 14
  • 7 Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
  • 8 Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
  • 9 Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
  • 10 Trifonova EA, Perekalin DS. INEOS Open 2019; 2: 124
  • 11 Li Z, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
  • 12 Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
  • 13 Dhawa U, Connon R, Oliveira JC. A, Steinbock R, Ackermann L. Org. Lett. 2021; 23: 2760
  • 14 Zhou T, Qian P.-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
  • 15 Heinemann F, Klodwig E, Knoch F, Wündisch M, Zenneck U. Chem. Ber. 1997; 130: 123
  • 16 Bodes G, Heinemann FW, Marconi G, Neumann S, Zenneck U. J. Organomet. Chem. 2002; 641: 90
  • 17 Marconi G, Baier H, Heinemann FW, Pinto P, Pritzkow H, Zenneck U. Inorg. Chim. Acta 2003; 352: 188
  • 18 Reiner T, Jantke D, Miao X.-H, Marziale AN, Kiefer FJ, Eppinger J. Dalton Trans. 2013; 42: 8692
  • 19 Benson CL, West FG. Org. Lett. 2007; 9: 2545
  • 20 Barton DH. R, Bashiardes G, Fourrey J.-L. Tetrahedron Lett. 1983; 24: 1605
  • 21 Mikle G, Boros B, Kollár L. Tetrahedron: Asymmetry 2016; 27: 377
  • 22 Perekalin DS, Kolos AV. Mendeleev Commun. 2021; 31: 1
  • 23 Audic B, Wodrich MD, Cramer N. Chem. Sci. 2019; 10: 781
  • 24 Mantell MA, Kampf JW, Sanford M. Organometallics 2018; 37: 3240
  • 25 Brown LC, Ressegue E, Merola JS. Organometallics 2016; 35: 4014
  • 26 Li B, Roisnel T, Darcel C, Dixneuf PH. Dalton Trans. 2012; 41: 10934
  • 27 Marcé P, Paterson AJ, Mahon MF, Frost CG. Catal. Sci. Technol. 2016; 6: 7068
  • 28 Fernandez S, Pfeffer M, Ritleng V, Sirlin C. Organometallics 1999; 18: 2390
  • 29 Zhang G.-F, Li Y, Xie X.-Q, Ding C.-R. Org. Lett. 2017; 19: 1216
  • 30 Li B, Ma J, Wang N, Feng H, Xu S, Wang B. Org. Lett. 2012; 14: 736
  • 31 Warratz S, Kornhaaß C, Cajaraville A, Niepötter B, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 5513
  • 32 Dub PA, Gordon JC. Nat. Rev. Chem. 2018; 2: 396
  • 33 Ikariya T, Hashiguchi S, Murata K, Noyori R. Org. Synth. 2005; 82: 10
  • 34 Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
  • 35 Isogai Y, Menggenbateer, Nawaz Khan F, Asao N. Tetrahedron 2009; 65: 9575
  • 36 Andna L, Miesch L. Org. Lett. 2018; 20: 3430
  • 37 Brandenburg JG, Bannwarth C, Hansen A, Grimme S. J. Chem. Phys. 2018; 148: 64104
  • 38 Neese F, Wennmohs F, Becker U, Riplinger C. J. Chem. Phys. 2020; 152: 224108
  • 39 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
  • 40 Sheldrick GM. Acta Crystallogr., Sect. A 2015; 71: 3
  • 41 CCDC 2111652 (5) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures