Synthesis 2021; 53(22): 4221-4230
DOI: 10.1055/a-1638-5783
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Regio- and Stereoselective Addition of Brønsted Acids to Yndiamides: Synthesis of N,O,N- and N,S,N-Trisubstituted Ketene Acetals

Olivia L. Garry
,
Steven J. Mansfield
,
Edward A. Anderson
S.J.M. thanks the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine for studentships (EP/L015838/1), generously supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, ­Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex. E.A.A. thanks the EPSRC for additional support (EP/M019195/1).


Abstract

Yndiamides, N,N-disubstituted alkynes, are versatile building blocks for the synthesis of nitrogen-containing organic molecules. Unlike ynamides, relatives that are inherently polarized by a single nitrogen substituent, their pseudo-symmetric nature renders regioselective reactions challenging. Here we report investigations into the regio­selective addition of Brønsted acids to non-symmetric yndiamides, a reaction that delivers N,O,N- and N,S,N-trisubstituted ketene acetals with excellent regio- and stereoselectivity.

Supporting Information



Publication History

Received: 17 August 2021

Accepted: 06 September 2021

Accepted Manuscript online:
06 September 2021

Article published online:
21 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mansfield SJ, Christensen KE, Thompson AL, Ma K, Jones MW, Mekareeya A, Anderson EA. Angew. Chem. Int. Ed. 2017; 56: 14428
    • 2a An D, Zhang W, Pan B, Zhao Y. Eur. J. Org. Chem. 2021; 314
    • 2b Gao E, Peng C, Zhang J, Wang X.-N, Chang J. Org. Biomol. Chem. 2021; 19: 2182
    • 2c Mallick RK, Prabagar B, Sahoo AK. J. Org. Chem. 2017; 82: 10583
    • 2d Baldassari LL, de la Torre A, Li J, Lüdtke DS, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 15723
    • 2e Wang W.-S, Chen P, Tang Y. Tetrahedron 2017; 73: 2731
    • 2f Xu S, Liu J, Hu D, Bi X. Green Chem. 2015; 17: 184
    • 2g Graux LV, Clavier H, Buono G. ChemCatChem 2014; 6: 2544
    • 2h Smith DL, Goundry WR. F, Lam HW. Chem. Commun. 2012; 48: 1505
    • 3a Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
    • 3b Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 3c Prabagar B, Ghosh N, Sahoo AK. Synlett 2017; 28: 2539
    • 3d Evano G, Blanchard N, Compain G, Coste A, Demmer CS, Gati W, Guissart C, Heimburger J, Henry N, Jouvin K, Karthikeyan G, Laouiti A, Lecomte M, Martin-Mingot A, Métayer B, Michelet B, Nitelet A, Theunissen C, Thibaudeau S, Wang J, Zarca M, Zhang C. Chem. Lett. 2016; 45: 574
    • 4a Tong Z, Garry OL, Smith PJ, Jiang Y, Mansfield SJ, Anderson EA. Org. Lett. 2021; 23: 4888
    • 4b Smith PJ, Jiang Y, Tong Z, Pickford HD, Christensen KE, Nugent J, Anderson EA. Org. Lett. 2021; 23: 6547
    • 5a Gogoi MP, Vanjari R, Prabagar B, Yang S, Dutta S, Mallick RK, Gandon V, Sahoo AK. Chem. Commun. 2021; 57: 7521
    • 5b Starkov P, Moore JT, Duquette DC, Stoltz BM, Marek I. J. Am. Chem. Soc. 2017; 139: 9615
    • 5c Hu L, Xu S, Zhao Z, Yang Y, Peng Z, Yang M, Wang C, Zhao J. J. Am. Chem. Soc. 2016; 138: 13135
    • 5d Zhang L, Dong J, Xu X, Liu Q. Chem. Rev. 2016; 116: 287
  • 6 The major regioisomer 3b could also be assigned via 1H NMR spectroscopy in which the enamide proton appeared as a singlet, rather than a doublet due to coupling with the phosphorus atom; in other Brønsted acid adducts, this proton appeared as a doublet in the minor regioisomer (e.g., 3′e) in the 1H NMR spectrum of the crude reaction mixture.

    • Low-temperature single-crystal X-ray diffraction data for 3a, 3b, 3c and 7 were collected using a Rigaku Oxford SuperNova diffractometer at 150 K. Raw frame data were reduced using CrysAlisPro and the structures were solved using ‘Superflip’.7a Subsequent refinement was carried out with CRYSTALS.7b Further details on the refinements, including disorder modelling and restraints, are documented in the CIF. CCDC 2103193–2103196 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 7a Palatinus L, Chapuis G. J. Appl. Cryst. 2007; 40: 786
    • 7b Parois P, Cooper RI, Thompson AL. Chem. Cent. J. 2015; 9: 30
    • 7c Cooper RI, Thompson AL, Watkin DJ. J. Appl. Crystallogr. 2010; 43: 1100
  • 8 Dumas AM, Fillion E. Acc. Chem. Res. 2010; 43: 440
  • 9 Plamont R, Graux LV, Clavier H. Eur. J. Org. Chem. 2018; 1372
  • 10 Zhang Y, Hsung RP, Zhang X, Huang J, Slafer BW, Davis A. Org. Lett. 2005; 7: 1047
  • 11 Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
  • 12 Tona V, Ruider SA, Berger M, Shaaban S, Padmanaban M, Xie L.-G, González L, Maulide N. Chem. Sci. 2016; 7: 6032
  • 13 Zhang S.-L, Wan H.-X, Deng Z.-Q. Org. Biomol. Chem. 2017; 15: 6367
  • 14 Pasqua AE, Matheson M, Sewell AL, Marquez R. Org. Process Res. Dev. 2011; 15: 467
  • 15 DeKorver KA, Walton MC, North TD, Hsung RP. Org. Lett. 2011; 13: 4862