Synthesis 2021; 53(24): 4644-4653
DOI: 10.1055/a-1559-3020

Synthesis of γ,δ-Unsaturated Esters and Amides via Au(I)-Catalyzed Reactions of Aryl Ynol Ethers or Ynamides with Allylic Alcohols

Souta Misawa
a   Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
Asaki Miyairi
a   Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
a   Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
b   Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium
a   Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
› Author Affiliations
This work was financially supported in part by Grants-in Aid for Scientific Research (B) (No. 20H0360) and Scientific Research (C) (No. 20K06960) from the Japan Society of the Promotion of Science (JSPS). The Nagase Science Technology Foundation (for Y.S.) and the Akiyama Life Science Foundation (for Y.O.) are also acknowledged for financial support. S.P.N. thanks the Bijzonder Onderzoeksfonds UGent (UGent BOF) for starting and advanced grants.


Polarized alkynes such as ynol ethers and ynamides have attracted much attention due to their inherent unique reactivity. Herein, we report Au(I)-catalyzed hydroalkoxylation/Claisen rearrangement cascade reactions of aryl ynol ethers and ynamides with allylic alcohols. At the first stage (hydroalkoxylation) of this cascade reaction, attack of allylic alcohols to aryl ynol ethers or ynamides occurs at the α-position of the polarized alkynes in a completely regioselective manner. Claisen rearrangement of the resulting adducts subsequently takes place to give γ,δ-unsaturated esters or amides, respectively. The [Au(IPr)NTf2] catalyst is most effective for this reaction, and the reaction proceeds under mild conditions (in the case of aryl ynol ether: in THF, 60 °C; in the case of ynamides: in toluene, 80 °C) in an atom-economical way.

Supporting Information

Publication History

Received: 28 June 2021

Accepted after revision: 27 July 2021

Accepted Manuscript online:
27 July 2021

Article published online:
29 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • For selected reviews, see:
    • 1a Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
    • 1b Evano G, Gaumont AC, Alayrac C, Wrona IE, Giguere JR, Delacroix O, Bayle A, Jouvin K, Theunissen C, Gatignol J, Silvanus AC. Tetrahedron 2014; 70: 1529

      For selected reviews, see:
    • 2a Hashmi AS. K. Gold Bull. 2004; 37: 51
    • 2b Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 2c Marion N, Nolan SP. Chem. Soc. Rev. 2008; 37: 1776
    • 2d Krause N, Winter C. Chem. Rev. 2011; 111: 1994
    • 2e Goodwin JA, Aponick A. Chem. Commun. 2015; 51: 8730
    • 2f Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 2g Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
    • 2h Campeau D, Leoń Rayo DF, Mansour A, Muratov K, Gagosz F. Chem. Rev. 2021; 121: 8756
  • 3 Ketcham JM, Biannic B, Aponick A. Chem. Commun. 2013; 49: 4157
  • 4 Gomez-Suárez A, Gasperini D, Vummaleti SV. C, Poater A, Cavallo L, Nolan SP. ACS Catal. 2014; 4: 2701

    • For selected examples of gold-catalyzed nucleophilic addition of oxygen atom to alkyne followed by [3,3]-rearrangement, see:
    • 5a Bae HJ, Baskar B, An SE, Cheong JY, Thangadurai DT, Hwang I.-C, Rhee YH. Angew. Chem. Int. Ed. 2008; 47: 2263
    • 5b Ueda M, Sato A, Ikeda Y, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
    • 5c Istrate FM, Gagosz F. Beilstein J. Org. Chem. 2011; 7: 878
    • 5d Park SR, Kim C, Kim D.-G, Thrimurtulu N, Yeom H.-S, Jun J, Shin S, Rhee YH. Org. Lett. 2013; 15: 1166
    • 5e Wu H, Zi W, Li G, Lu H, Toste FD. Angew. Chem. Int. Ed. 2015; 54: 8529
    • 6a For a recent review on the chemistry of ynol ethers, see: Gray VJ, Wilden JD. Org. Biomol. Chem. 2016; 14: 9695

    • For recent reviews on the chemistry of ynamides, see:
    • 6b Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 6c DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 6d Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560

      For our report on transition-metal catalysis utilizing ynol ethers as a platform, see:
    • 7a Saito N, Sun Z, Sato Y. Chem. Asian J. 2015; 10: 1170

    • For our reports on transition-metal catalysis utilizing ynamide as a platform, see:
    • 7b Saito N, Katayama T, Sato Y. Org. Lett. 2008; 10: 3829
    • 7c Saito N, Katayama T, Sato Y. Heterocycles 2011; 82: 1181
    • 7d Saito N, Saito K, Shiro M, Sato Y. Org. Lett. 2011; 13: 2718
    • 7e Saito N, Ichimaru T, Sato Y. Org. Lett. 2012; 14: 1914
    • 7f Saito N, Saito K, Sato H, Sato Y. Adv. Synth. Catal. 2013; 355: 853
    • 7g Saito N, Abdullah I, Hayashi K, Hamada K, Koyama M, Sato Y. Org. Biomol. Chem. 2016; 14: 10080
    • 7h Doi R, Abdullah I, Taniguchi T, Saito N, Sato Y. Chem. Commun. 2017; 53: 7720
    • 7i Doi R, Okano T, Abdullah I, Sato Y. Synlett 2019; 30: 1048
  • 8 Liu et al. reported that γ,δ-unsaturated amides were produced as undesired products in some cases in their study on Au(I)-catalyzed 1,4-carbooxygenation of 3-ene-1-ynamide with allylic alcohol, see: Giri SS, Lin L.-H, Jadhav PD, Liu R.-S. Adv. Synth. Catal. 2017; 359: 590

    • For other examples of hydroalkoxylation/Claisen rearrangement cascades of ynamides and/or aryl ynol ether with allylic alcohol, see: Brønsted acid catalyzed reaction:
    • 9a Mulder JA, Hsung RP, Frederick MO, Tracey MR, Zificsak CA. Org. Lett. 2002; 4: 1383
    • 9b Frederick MO, Hsung RP, Lambeth RH, Mulder JA, Tracey MR. Org. Lett. 2003; 5: 2663
    • 9c Zn- or Sc-catalyzed reaction: Grimster NP, Wilton DA. A, Chan LK. M, Godfrey CR. A, Green C, Owen DR, Gaunt MJ. Tetrahedron 2010; 66: 6429
    • 9d Yttrium-catalyzed intramolecular reaction: Zhou B, Li L, Zhu X.-Q, Yan J.-Z, Guo Y.-L, Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 4015
    • 9e Yttrium-catalyzed intermolecular reaction: Zhou B, Li L, Liu X, Tan T.-D, Lin J, Ye L.-W. J. Org. Chem. 2017; 82: 10149
  • 10 Ricard L, Gagosz F. Organometallics 2007; 26: 4704

    • For recent examples of reactions with [Au(IPr)NTf2] as a catalyst, see:
    • 11a Pirovano V, Brambilla E, Rizzato S, Abbiati G, Bozzi M, Rossi E. J. Org. Chem. 2019; 84: 5150
    • 11b Virumbrales C, Solas M, Suárez-Pantiga S, Fernández-Rodríguez MA, Marín-Luna M, Silva López C, Sanz R. Org. Biomol. Chem. 2019; 17: 9924
    • 11c Dubovtsev AY, Shcherbakov NV, Dar'in DV, Kukushkin VY. Adv. Synth. Catal. 2020; 362: 2672
    • 11d Gómez-Herrera A, Hashim II, Porré M, Nahra F, Cazin CS. J. Eur. J. Org. Chem. 2020; 6790
    • 11e Zimin DP, Dar'in DV, Kukushkin VY, Dubovtsev AY. J. Org. Chem. 2021; 86: 1748 ; and references therein
  • 12 Metz P, Hungerhoff B. J. Org. Chem. 1997; 62: 4442
  • 13 For a representative report, see: Vance RL, Rondan NG, Houk KN, Jensen F, Borden WT, Komornicki A, Wimmer E. J. Am. Chem. Soc. 1988; 110: 2314
  • 14 Hu L, Gui Q, Chan X, Tan Z, Zhu G. J. Org. Chem. 2016; 81: 4861
  • 15 Jouvin K, Bayle A, Legrand F, Evano G. Org. Lett. 2012; 14: 1652
  • 16 Zhang Y, Hsung RP, Tracey MR, Kurtz KC. M, Vera EL. Org. Lett. 2004; 6: 1151
  • 17 Hamada T, Ye X, Stahl SS. J. Am. Chem. Soc. 2008; 130: 833
  • 18 Yasui H, Yorimitsu H, Oshima K. Chem. Lett. 2008; 37: 40