Synlett 2019; 30(09): 1048-1052
DOI: 10.1055/s-0037-1611529
letter
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed β-Carboxylation of Ynamides with Carbon Dioxide

Ryohei Doi
,
Taichi Okano
,
Iman Abdullah
,
Japan Science and Technology Agency (ACT-C / JPMJCR12YM), Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (B), 2629300).
Further Information

Publication History

Received: 01 April 2019

Accepted after revision: 15 April 2019

Publication Date:
08 May 2019 (online)


Current address: Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

Abstract

A nickel-catalyzed β-selective hydrocarboxylation of ynamides to give protected dehydro-β-amino acids was developed. The key to exclusive β-selectivity was the use of diethylzinc as a reductant in the presence of a magnesium salt. The reaction was conducted with bis(acetylacetonato)nickel(II) instead of costly and sensitive bis(1,5-cyclooctadiene)nickel(0). In addition, the optimized ligand was inexpensive 1,5-cyclooctadiene. Investigation of the substrate scope revealed that both nitrogen and alkyne substituents have marked effects on the reaction efficiency. We obtained experimental clues that indicated the formation of a vinylzinc intermediate that forms a C–C bond with CO2.

Supporting Information

 
  • References and Notes


    • For transition-metal-catalyzed carboxylations with CO2, see:
    • 1a Correa A, Martin R. Angew. Chem. Int. Ed. 2009; 48: 6201
    • 1b Tsuji Y, Fujihara T. Chem. Commun. 2012; 48: 9956
    • 1c Yu D, Teong SP, Zhang Y. Coord. Chem. Rev. 2015; 293: 279
    • 1d Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
    • 1e Luan Y.-X, Ye M. Tetrahedron Lett. 2018; 59: 853
    • 1f Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
    • 1g Yang Y, Lee J.-W. Chem. Sci. 2019; 10: 3905

      For selected examples of nickel-catalyzed carboxylation of alkynes, see:
    • 2a Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
    • 2b Shimizu K, Takimoto M, Sato Y, Mori M. Org. Lett. 2005; 7: 195
    • 2c Mizuno T, Oonishi Y, Takimoto M, Sato Y. Eur. J. Org. Chem. 2011; 2606
    • 2d Fujihara T, Horimoto Y, Mizoe T, Sayyed FB, Tani Y, Terao J, Sakaki S, Tsuji Y. Org. Lett. 2014; 16: 4960
    • 2e Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
    • 2f Wang X, Nakajima M, Martin R. J. Am. Chem. Soc. 2015; 137: 8924

      For selected examples of nickel-catalyzed carboxylation of alkenes, see:
    • 3a Williams CM, Johnson JB, Rovis T. J. Am. Chem. Soc. 2008; 130: 14936
    • 3b Lejkowski ML, Lindner R, Kageyama T, Bódizs G. É, Plessow PN, Müller IB, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M. Chem. Eur. J. 2012; 18: 14017
    • 3c Hendriksen C, Pidko EA, Yang G, Schäffner B, Vogt D. Chem. Eur. J. 2014; 20: 12037
    • 3d Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M. Chem. Eur. J. 2014; 20: 16858
    • 3e Manzini S, Huguet N, Trapp O, Schaub T. Eur. J. Org. Chem. 2015; 7122
    • 3f Gaydou M, Moragas T, Juliá-Hernández F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
    • 3g Vavasori A, Calgaro L, Pietrobon L, Ronchin L. Pure Appl. Chem. 2018; 90: 315
    • 3h Meng Q.-Y, Wang S, Huff GS, König B. J. Am. Chem. Soc. 2018; 140: 3198

      For selected examples of nickel-catalyzed carboxylation of 1,2- and 1,3-dienes, see:
    • 4a Hoberg H, Gross S, Milchereit A. Angew. Chem., Int. Ed. Engl. 1987; 26: 571
    • 4b Takimoto M, Mori M. J. Am. Chem. Soc. 2002; 124: 10008
    • 4c Takimoto M, Nakamura Y, Kimura K, Mori M. J. Am. Chem. Soc. 2004; 126: 5956
    • 4d Takimoto M, Kawamura M, Mori M, Sato Y. Synlett 2005; 2019
    • 4e Tortajada A, Ninokata R, Martin R. J. Am. Chem. Soc. 2018; 140: 2050
    • 5a Saito N, Abdullah I, Hayashi K, Hamada K, Koyama M, Sato Y. Org. Biomol. Chem. 2016; 14: 10080
    • 5b Doi R, Abdullah I, Taniguchi T, Saito N, Sato Y. Chem. Commun. 2017; 53: 7720
    • 5c For examples of biologically active β-amino acids, see ref. 5a.
  • 6 Takimoto M, Gholap SS, Hou Z. Chem. Eur. J. 2015; 21: 15218
  • 7 We have also developed a carboxylation of allenamides: Saito N, Sugimura Y, Sato Y. Synlett 2014; 25: 736
  • 8 We have previously conducted DFT calculations for an ynamide that supports nucleophilicity at the β-position; see: Saito N, Katayama T, Sato Y. Org. Lett. 2008; 10: 3829
  • 9 Wender PA, Smith TE. In Encyclopedia of Reagents for Organic Synthesis, Vol. 2. Paquette LA, Crich D, Fuchs PL, Molander GA. Wiley; Hoboken: 2009. DOI 10.1002/047084289X.rd035
  • 10 CCDC 1906437 contains the supplementary crystallographic data for compound 2n. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 11 Li S, Yuan W, Ma S. Angew. Chem. Int. Ed. 2011; 50: 2578
  • 12 This transmetallation step would be formally analogous to protonation of nickelacyclopropene to afford a vinylnickel complex, see: Eisch JJ, Ma X, Han KI, Gitua JN, Krüger C. Eur. J. Inorg. Chem. 2001; 77
    • 13a Ochiai H, Jang M, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 2681
    • 13b Achonduh GT, Hadei N, Valente C, Avola S, O’Brien CJ. Organ M. G. Chem. Commun. 2010; 46: 4109
    • 13c Ohashi M, Kambara T, Hatanaka T, Saijo H, Doi R, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 3256
    • 13d Ohashi M, Doi R, Ogoshi S. Chem. Eur. J. 2014; 20: 2040
  • 14 β-Aminoalkenoate Esters 2a–n; General Procedure A Schlenk flask equipped with a rubber septum and a stirring bar was charged with Ni(acac)2 (5.1 mg, 0.02 mmol) and MgBr2 (110 mg, 0.6 mmol) under N2 and cooled to 0 °C. A solution of the appropriate ynamide 1 (0.2 mmol) in NMP (2 mL) and COD (24 μL, 0.2 mmol) were both added from syringes. The vessel was degassed by a freeze–pump–thaw cycle, and CO2 was introduced by using a balloon. A 1 M solution of ZnEt2 in toluene (0.6 mL, 0.6 mmol), at the same temperature, was added and the mixture was heated to 50 °C for 1 h. When the starting material had disappeared (TLC), the solution was cooled in an ice bath, and the reaction was quenched with 3 M aq HCl. The aqueous layer was separated and extracted with Et2O, and the combined organic layer was washed sequentially with H2O and brine, dried (Na2SO4), and concentrated. The residue was dissolved in 1:4 MeOH–Et2O and treated with TMSCHN2, with careful monitoring by TLC. The resulting solution was concentrated and purified by column chromatography. Methyl (2E)-2-Butyl-3-{(tert-butyl)[(4-methylphenyl)sulfonyl]amino}acrylate (2h) Prepared as a colorless oil from ynamide 1h (61.5 mg, 0.2 mmol) by following the general procedure; yield: 57.4 mg (78%). 1H NMR (400 MHz, CDCl3, r.t.): δ = 7.65 (2 H, d, J = 8.5 Hz), 7.25 (2 H, d, J = 4.0 Hz), 6.74 (1 H, s), 3.76 (3 H, s), 2.39 (3 H, s), 2.22 (2 H, t, J = 7.9 Hz), 1.30 (9 H, s), 1.24–1.19 (4 H, m), 0.83 (3 H, t, J = 7.2 Hz).13C NMR (100 MHz, CDCl3, r.t.): δ = 167.6, 143.3, 140.2, 138.3, 134.1, 129.5, 129.4, 127.7, 115.2, 61.6, 51.9, 29.6, 29.4, 27.2, 23.2, 21.5, 13.8. HRMS (EI): m/z [M + Na] calcd for C19H29NNaO4S: 390.1715; found: 390.1714. For additional procedures and characterization data, see the Supporting Information.