Subscribe to RSS
DOI: 10.1055/a-1548-8240
Synthetic Applications of Monofluoromethylsulfonium Salts
Financial support was provided by Latvijas Zinātnes Padome (the Latvian Council of Science; project LZP-2019/1-0258).
Abstract
Monofluoromethylsulfonium salts are emerging reagents for the fluoromethylation and fluoromethylenation or fluoromethylene transfer. Using this type of reagent is a simple approach for the introduction of the fluoromethyl group into a wide range of nucleophiles using mild basic conditions. Recently, fluoromethylsulfonium salts have been demonstrated to act as a synthetic equivalent for the challenging fluoromethylene synthon. For instance, these reagents can be used for the direct synthesis of monofluoroepoxides and fluorocyclopropanes from activated alkenes via a sulfur fluoromethylide intermediate. Sulfonium salts are an alternative, easy-to-handle option to volatile and environmentally concerning freons for achieving monofluorinated compounds. This review focuses on synthetic application of these reagents known to date.
1 Introduction
2 Fluoromethylation of O-, N-, S-, P-, and C-Nucleophiles
3 Sulfonium Salts for Radical Monofluoromethylation of Alkenes
4 Sulfonium Salts for Fluoromethylene Transfer
5 Conclusions
Key words
fluoromethylation - fluoromethylenation - sulfur fluoromethylide - sulfonium salts - fluorocarbene - fluoromethylene transferPublication History
Received: 18 May 2021
Accepted after revision: 13 July 2021
Accepted Manuscript online:
13 July 2021
Article published online:
05 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 1d Bohm H.-J, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
- 2 Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley & Sons; Hoboken: 2008
- 3a Parent EE, Carlson KE, Katzenellenbogen JA. J. Org. Chem. 2007; 72: 5546
- 3b Simeon FG, Brown AK, Zoghbi SS, Patterson VM, Innis RB, Pike VW. J. Med. Chem. 2007; 50: 3256
- 3c Silhar P, Pohl R, Votruba I, Hocek M. Org. Biomol. Chem. 2005; 3: 3001
- 3d Gerus II, Kolomeitsev AA, Kolycheva MI, Kukhar VP. J. Fluorine Chem. 2000; 105: 31
- 3e Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 4a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 4b Tarantino G, Hammond C. Green Chem. 2020; 22: 5195
- 4c Manteau B, Pazenok S, Vors J.-P, Leroux FR. J. Fluorine Chem. 2010; 131: 140
- 5a Yohan M, Magnier E. Eur. J. Org. Chem. 2012; 2479
- 5b Khalid M, Mohammmed S. Orient. J. Chem. 2018; 34: 2708
- 5c Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 6a Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 6b Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
- 6c Levi N, Amir D, Gershonov E, Zafrani Y. Synthesis 2019; 51: 4549
- 7a Reichel M, Karaghiosoff K. Angew. Chem. Int. Ed. 2020; 59: 12268
- 7b Olah GA, Pavlath A. Acta Chim. Acad. Sci. Hung. 1953; 3: 425
- 7c Olah GA, Mateescu GD. J. Am. Chem. Soc. 1971; 93: 781
- 7d Zhang W, Zhu L, Hu J. Tetrahedron 2007; 63: 10569
- 7e Wang L, Wei J, Wu R, Cheng G, Li X, Hu J, Hu Y, Sheng R. Org. Chem. Front. 2017; 4: 214
- 8a Monticelli S, Pace V. Aust. J. Chem. 2018; 71: 473
- 8b Zhang M.-R, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, Okauchi T, Obayashi S, Suhara T, Suzuki K. J. Med. Chem. 2004; 47: 2228
- 8c Zhang M.-R, Ogawa M, Furutsuka K, Yoshida Y, Suzuki K. J. Fluorine Chem. 2004; 125: 1879
- 8d Wang R, Ding T, Jiang L, He W, Yi W. J. Org. Chem. 2020; 85: 3993
- 8e Senatore R, Malik M, Spreitzer M, Holzer W, Pace V. Org. Lett. 2020; 22: 1345
- 9a Pons A, Poisson T, Pannecoucke X, Charette AB, Jubault P. Synthesis 2016; 48: 4060
- 9b Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Chem. Eur. J. 2021; 27: 2935
- 10 Melngaile R, Veliks J. Sulfonium, (Fluoromethyl)phenyl(2,3,4,5-tetramethylphenyl)-, Tetrafluoroborate(1-) (1:1). In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]. Wiley & Sons;; Posted 30.04.2021
- 11 Leitão EP. T. WO 2012056201A2, 2012
- 12 Xu Y, Fletcher M, Dolbier WR. J. Org. Chem. 2000; 65: 3460
- 13 Prakash GK. S, Ledneczki I, Chacko S, Olah GA. Org. Lett. 2008; 10: 557
- 14 Veliks J, Kazia A. Chem. Eur. J. 2019; 25: 3786
- 15 Kail DC, Malova Krizkova P, Wieczorek A, Hammerschmidt F. Chem. Eur. J. 2014; 20: 4086
- 16a Ielo L, Pillari V, Miele M, Castiglione D, Pace V. Synlett 2021; 32: 551
- 16b Brahms DL. S, Dailey WP. Chem. Rev. 1996; 96: 1585
- 16c Schlosser M, Heinz G. Angew. Chem. Int. Ed. Engl. 1968; 7: 820
- 16d Hahnfeld JL, Burton DJ. Tetrahedron Lett. 1975; 16: 1819
- 16e Tamura O, Hashimoto M, Kobayashi Y, Katoh T, Nakatani K, Kamada M, Hayakawa I, Akiba T, Terashima S. Tetrahedron Lett. 1992; 33: 3483
- 16f Nishimura J, Furukawa J. J. Chem. Soc. D 1971; 1375
- 16g Beaulieu L.-PB, Schneider JF, Charette AB. J. Am. Chem. Soc. 2013; 135: 7819
- 16h Colella M, Tota A, Großjohann A, Carlucci C, Aramini A, Sheikh NS, Degennaro L, Luisi R. Chem. Commun. 2019; 55: 8430
- 16i Monticelli S, Colella M, Pillari V, Tota A, Langer T, Holzer W, Degennaro L, Luisi R, Pace V. Org. Lett. 2019; 21: 584
- 17 Shen X, Zhang W, Zhang L, Luo T, Wan X, Gu Y, Hu J. Angew. Chem. Int. Ed. 2012; 51: 6966
- 18a Oliver J, Rao U, Emerson M. Tetrahedron Lett. 1964; 5: 3419
- 18b Ando T, Yamanaka H, Namigata F, Funasaka W. J. Org. Chem. 1970; 35: 33
- 18c Kirihara M, Ogata T, Itou A, Naito S, Kishida M, Yamazaki K, Tabata H, Takahashi H. Chem. Lett. 2013; 42: 1377
- 18d Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Org. Lett. 2012; 14: 5130
- 19a Melngaile R, Sperga A, Baldridge KK, Veliks V. Org. Lett. 2019; 21: 7174
- 19b Kazia A, Melngaile R, Mishnev A, Veliks J. Org. Biomol. Chem. 2020; 18: 1384
- 19c Sperga A, Melngaile R, Kazia A, Belyakov S, Veliks J. J. Org. Chem. 2021; 86: 3196
- 20 Rydzik AM, Leung IK. H, Thalhammer A, Kochan GT, Claridge TD. W, Schofield CJ. Chem. Commun. 2014; 50: 1175
- 21 Al Jasem J, Thiemann T, Gano L, Oliveira MC. J. Fluorine Chem. 2016; 185: 48
- 22 Ascenso OS, Leitão EP. T, Heggie W, Ventura MR, Maycock CD. Tetrahedron 2017; 73: 1165
- 23 Liu Y, Lu L, Shen Q. Angew. Chem. Int. Ed. 2017; 56: 9930
- 24 Hong X, Liu Y, Lu L, Shen Q. Chin. J. Chem. 2020; 38: 1317
- 25 Carbonnel E, Pannecoucke X, Besset T, Jubault P, Poisson T. Chem. Commun. 2018; 54: 2491
- 26 Qin W.-B, Liu J.-J, Huang Z, Li X, Xiong W, Chen Y.-F, Liu G.-K. Eur. J. Org. Chem. 2020; 5862
- 27a Noto N, Koike T, Akita M. ACS Catal. 2019; 9: 4382
- 27b Koike T, Akita M. Org. Biomol. Chem. 2019; 17: 5413
- 28 Zhang W, Hu J. Adv. Synth. Catal. 2010; 352: 2799
- 29 David E, Milanole G, Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Chem. Eur. J. 2012; 18: 14904
- 30 Sperga A, Kazia A, Veliks J. Org. Biomol. Chem. 2021; 19: 2688
For review on strategic incorporation of fluorine as a hydrogen bioisostere:
Recent review on fluoromethylation:
Early examples of fluoromethylation:
Fluorohalomethanes (CH2FX) for fluoromethylation:
CH2FI for fluoromethylation:
For reviews:
For CHFBr2 as a reagent for monofluorocarbene generation:
For CHFI2 as a reagent for monofluorocarbene generation, see:
For CHF2I as a reagent for monofluorocarbene generation, see:
For CH2FI as a reagent, see: