Synthesis 2021; 53(24): 4549-4558
DOI: 10.1055/a-1548-8240
short review

Synthetic Applications of Monofluoromethylsulfonium Salts

Renate Melngaile
,
Janis Veliks
Financial support was provided by Latvijas Zinātnes Padome (the Latvian Council of Science; project LZP-2019/1-0258).


Abstract

Monofluoromethylsulfonium salts are emerging reagents for the fluoromethylation and fluoromethylenation or fluoromethylene transfer. Using this type of reagent is a simple approach for the introduction of the fluoromethyl group into a wide range of nucleophiles using mild basic conditions. Recently, fluoromethylsulfonium salts have been demonstrated to act as a synthetic equivalent for the challenging fluoromethylene synthon. For instance, these reagents can be used for the direct synthesis of monofluoroepoxides and fluorocyclopropanes from activated alkenes via a sulfur fluoromethylide intermediate. Sulfonium salts are an alternative, easy-to-handle option to volatile and environmentally concerning freons for achieving monofluorinated compounds. This review focuses on synthetic application of these reagents known to date.

1 Introduction

2 Fluoromethylation of O-, N-, S-, P-, and C-Nucleophiles

3 Sulfonium Salts for Radical Monofluoromethylation of Alkenes

4 Sulfonium Salts for Fluoromethylene Transfer

5 Conclusions



Publication History

Received: 18 May 2021

Accepted after revision: 13 July 2021

Accepted Manuscript online:
13 July 2021

Article published online:
05 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 1d Bohm H.-J, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
  • 2 Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley & Sons; Hoboken: 2008
    • 3a Parent EE, Carlson KE, Katzenellenbogen JA. J. Org. Chem. 2007; 72: 5546
    • 3b Simeon FG, Brown AK, Zoghbi SS, Patterson VM, Innis RB, Pike VW. J. Med. Chem. 2007; 50: 3256
    • 3c Silhar P, Pohl R, Votruba I, Hocek M. Org. Biomol. Chem. 2005; 3: 3001
    • 3d Gerus II, Kolomeitsev AA, Kolycheva MI, Kukhar VP. J. Fluorine Chem. 2000; 105: 31

    • For review on strategic incorporation of fluorine as a hydrogen bioisostere:
    • 3e Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 4a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 4b Tarantino G, Hammond C. Green Chem. 2020; 22: 5195
    • 4c Manteau B, Pazenok S, Vors J.-P, Leroux FR. J. Fluorine Chem. 2010; 131: 140
    • 5a Yohan M, Magnier E. Eur. J. Org. Chem. 2012; 2479
    • 5b Khalid M, Mohammmed S. Orient. J. Chem. 2018; 34: 2708
    • 5c Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650

      Recent review on fluoromethylation:
    • 7a Reichel M, Karaghiosoff K. Angew. Chem. Int. Ed. 2020; 59: 12268

    • Early examples of fluoromethylation:
    • 7b Olah GA, Pavlath A. Acta Chim. Acad. Sci. Hung. 1953; 3: 425
    • 7c Olah GA, Mateescu GD. J. Am. Chem. Soc. 1971; 93: 781

    • Fluorohalomethanes (CH2FX) for fluoromethylation:
    • 7d Zhang W, Zhu L, Hu J. Tetrahedron 2007; 63: 10569
    • 7e Wang L, Wei J, Wu R, Cheng G, Li X, Hu J, Hu Y, Sheng R. Org. Chem. Front. 2017; 4: 214

      CH2FI for fluoromethylation:
    • 8a Monticelli S, Pace V. Aust. J. Chem. 2018; 71: 473
    • 8b Zhang M.-R, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, Okauchi T, Obayashi S, Suhara T, Suzuki K. J. Med. Chem. 2004; 47: 2228
    • 8c Zhang M.-R, Ogawa M, Furutsuka K, Yoshida Y, Suzuki K. J. Fluorine Chem. 2004; 125: 1879
    • 8d Wang R, Ding T, Jiang L, He W, Yi W. J. Org. Chem. 2020; 85: 3993
    • 8e Senatore R, Malik M, Spreitzer M, Holzer W, Pace V. Org. Lett. 2020; 22: 1345
    • 9a Pons A, Poisson T, Pannecoucke X, Charette AB, Jubault P. Synthesis 2016; 48: 4060
    • 9b Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Chem. Eur. J. 2021; 27: 2935
  • 10 Melngaile R, Veliks J. Sulfonium, (Fluoromethyl)phenyl(2,3,4,5-tetramethylphenyl)-, Tetrafluoroborate(1-) (1:1). In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]. Wiley & Sons;; Posted 30.04.2021
  • 11 Leitão EP. T. WO 2012056201A2, 2012
  • 12 Xu Y, Fletcher M, Dolbier WR. J. Org. Chem. 2000; 65: 3460
  • 13 Prakash GK. S, Ledneczki I, Chacko S, Olah GA. Org. Lett. 2008; 10: 557
  • 14 Veliks J, Kazia A. Chem. Eur. J. 2019; 25: 3786
  • 15 Kail DC, Malova Krizkova P, Wieczorek A, Hammerschmidt F. Chem. Eur. J. 2014; 20: 4086

    • For reviews:
    • 16a Ielo L, Pillari V, Miele M, Castiglione D, Pace V. Synlett 2021; 32: 551
    • 16b Brahms DL. S, Dailey WP. Chem. Rev. 1996; 96: 1585

    • For CHFBr2 as a reagent for monofluorocarbene generation:
    • 16c Schlosser M, Heinz G. Angew. Chem. Int. Ed. Engl. 1968; 7: 820

    • For CHFI2 as a reagent for monofluorocarbene generation, see:
    • 16d Hahnfeld JL, Burton DJ. Tetrahedron Lett. 1975; 16: 1819
    • 16e Tamura O, Hashimoto M, Kobayashi Y, Katoh T, Nakatani K, Kamada M, Hayakawa I, Akiba T, Terashima S. Tetrahedron Lett. 1992; 33: 3483
    • 16f Nishimura J, Furukawa J. J. Chem. Soc. D 1971; 1375

    • For CHF2I as a reagent for monofluorocarbene generation, see:
    • 16g Beaulieu L.-PB, Schneider JF, Charette AB. J. Am. Chem. Soc. 2013; 135: 7819

    • For CH2FI as a reagent, see:
    • 16h Colella M, Tota A, Großjohann A, Carlucci C, Aramini A, Sheikh NS, Degennaro L, Luisi R. Chem. Commun. 2019; 55: 8430
    • 16i Monticelli S, Colella M, Pillari V, Tota A, Langer T, Holzer W, Degennaro L, Luisi R, Pace V. Org. Lett. 2019; 21: 584
  • 17 Shen X, Zhang W, Zhang L, Luo T, Wan X, Gu Y, Hu J. Angew. Chem. Int. Ed. 2012; 51: 6966
    • 18a Oliver J, Rao U, Emerson M. Tetrahedron Lett. 1964; 5: 3419
    • 18b Ando T, Yamanaka H, Namigata F, Funasaka W. J. Org. Chem. 1970; 35: 33
    • 18c Kirihara M, Ogata T, Itou A, Naito S, Kishida M, Yamazaki K, Tabata H, Takahashi H. Chem. Lett. 2013; 42: 1377
    • 18d Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Org. Lett. 2012; 14: 5130
    • 19a Melngaile R, Sperga A, Baldridge KK, Veliks V. Org. Lett. 2019; 21: 7174
    • 19b Kazia A, Melngaile R, Mishnev A, Veliks J. Org. Biomol. Chem. 2020; 18: 1384
    • 19c Sperga A, Melngaile R, Kazia A, Belyakov S, Veliks J. J. Org. Chem. 2021; 86: 3196
  • 20 Rydzik AM, Leung IK. H, Thalhammer A, Kochan GT, Claridge TD. W, Schofield CJ. Chem. Commun. 2014; 50: 1175
  • 21 Al Jasem J, Thiemann T, Gano L, Oliveira MC. J. Fluorine Chem. 2016; 185: 48
  • 22 Ascenso OS, Leitão EP. T, Heggie W, Ventura MR, Maycock CD. Tetrahedron 2017; 73: 1165
  • 23 Liu Y, Lu L, Shen Q. Angew. Chem. Int. Ed. 2017; 56: 9930
  • 24 Hong X, Liu Y, Lu L, Shen Q. Chin. J. Chem. 2020; 38: 1317
  • 25 Carbonnel E, Pannecoucke X, Besset T, Jubault P, Poisson T. Chem. Commun. 2018; 54: 2491
  • 26 Qin W.-B, Liu J.-J, Huang Z, Li X, Xiong W, Chen Y.-F, Liu G.-K. Eur. J. Org. Chem. 2020; 5862
    • 27a Noto N, Koike T, Akita M. ACS Catal. 2019; 9: 4382
    • 27b Koike T, Akita M. Org. Biomol. Chem. 2019; 17: 5413
  • 28 Zhang W, Hu J. Adv. Synth. Catal. 2010; 352: 2799
  • 29 David E, Milanole G, Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Chem. Eur. J. 2012; 18: 14904
  • 30 Sperga A, Kazia A, Veliks J. Org. Biomol. Chem. 2021; 19: 2688