Synthesis 2021; 53(21): 3935-3950
DOI: 10.1055/a-1547-9270
short review

Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes

Jacob P. Sorrentino
a   Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
,
b   Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA
› Author Affiliations
Generous financial support from the National Institute of General Medical Sciences of the National Institutes of Health (R35 GM124661) is gratefully acknowledged. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Abstract

gem-Difluoroalkenes are readily available fluorinated building blocks, and the fluorine-induced electronic perturbations of the alkenes enable a wide array of selective functionalization reactions. However, many reactions of gem-difluoroalkenes result in a net C–F functionalization to generate monofluorovinyl products or addition of F to generate trifluoromethyl-containing products. In contrast, fluorine-retentive strategies for the functionalization of gem-difluoroalkenes remain less generally developed and is now becoming a rapidly developing area. This review will present the development of fluorine-retentive strategies including electrophilic, nucleophilic, radical, and transition metal catalytic strategies with an emphasis on key physical organic and mechanistic aspects that enable reactivities.

1 Introduction

2 Two-Electron Processes

2.1 Elimination of Allyl Groups

2.2 Electrophilic Addition

2.3 Halonium and Thiiranium Intermediates

2.4 Kinetic Quench of Anionic Intermediates

2.5 Concerted Cycloadditions

3 Radical Processes

3.1 Thermal Activation

3.2 Photoactivation

3.3 Transition-Metal-Mediated

4 Reductions

5 Cross-Coupling Reactions

6 Conclusions



Publication History

Received: 13 May 2021

Accepted after revision: 12 July 2021

Accepted Manuscript online:
12 July 2021

Article published online:
25 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375
  • 2 Koley S, Altman RA. Isr. J. Chem. 2020; 60: 313
  • 3 Liu C, Zeng H, Zhu C, Jiang H. Chem. Commun. 2020; 56: 10442
  • 4 Orsi DL, Altman RA. Chem. Commun. 2017; 53: 7168
  • 5 Hagan DO. Chem. Soc. Rev. 2008; 37: 308
  • 6 Roberts JD, Webb RL, McElhill EA. J. Am. Chem. Soc. 1950; 72: 408
  • 7 Zhu L, Li Y, Zhao Y, Hu J. Tetrahedron Lett. 2010; 51: 6150
  • 8 Liu H, Ge L, Wang D, Chen N, Feng C. Angew. Chem. Int. Ed. 2019; 58: 3918
  • 9 Yoo W, Kondo J, Rodroguez-Santamaria JA, Nguyen TV. Q, Kobayashi S. Angew. Chem. Int. Ed. 2019; 58: 6772
  • 10 Riss PJ, Aigbirhio FI. Chem. Commun. 2011; 47: 11873
  • 11 Liu C, Zhu C, Cai Y, Yang Z, Zeng H, Chen F, Jiang H. Chem. Eur. J. 2019; 26: 1953
  • 12 Tian P, Wang C.-Q, Cai S.-H, Song S, Ye L, Feng C, Loh T.-P. J. Am. Chem. Soc. 2016; 138: 15869
  • 13 Qiao Y, Si T, Yang M, Altman RA. J. Org. Chem. 2014; 79: 7122
  • 14 Lee C, Lin S. J. Chem. Res. 2000; 142
  • 15 Nguyen BV, Burton DJ. J. Org. Chem. 1997; 62: 7758
  • 16 Tang H.-J, Zhang Y.-F, Jiang Y.-W, Feng C. Org. Lett. 2018; 20: 5190
  • 17 Gao B, Zhao Y, Hu J. Angew. Chem. Int. Ed. 2015; 54: 638
  • 18 Lin T, Pan Z, Tu Y, Zhu S, Wu H, Liu Y, Li Z, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 22957
  • 19 Gao B, Zhao Y, Ni C, Hu J. Org. Lett. 2014; 16: 102
  • 20 Yang L, Fan W, Lin E, Tan D, Li Q, Wang H. Chem. Commun. 2018; 54: 5907
  • 21 Hu J, Yang Y, Lou Z, Ni C, Hu J. Chin. J. Chem. 2018; 36: 1202
  • 22 Zhang B, Zhang X, Hao J, Yang C. Eur. J. Org. Chem. 2018; 5007
  • 23 Yamazaki T, Ueki H, Kitazume T. Chem. Commun. 2002; 2670
  • 24 Xiong B, Chen L, Xu J, Sun H, Li X, Li Y, Lian Z. Org. Lett. 2020; 22: 9263
  • 25 Ueki H, Chiba T, Yamazaki T, Kitazume T. J. Org. Chem. 2004; 69: 7616
  • 26 Ueki H, Chiba T, Kitazume T. Org. Lett. 2005; 7: 1367
  • 27 Ueki H, Kitazume T. J. Org. Chem. 2005; 70: 9354
  • 28 Ueki H, Chiba T, Kitazume T. J. Org. Chem. 2006; 71: 3506
  • 29 Ueki H, Chiba T, Yamazaki T, Kitazume T. Tetrahedron 2005; 61: 11141
  • 30 Christenson B, Hallnemo G, Ullenius C. Tetrahedron 1991; 41: 4739
  • 31 Ye F, Ge Y, Spannenberg A, Neumann H, Xu L.-W, Beller M. Nat. Commun. 2021; 12: 3257
  • 32 Yang J, Wang J, Huang H, Qin G, Jiang Y, Xiao T. Org. Lett. 2019; 21: 2654
  • 33 Zhang J, Yang J, Cheng J. Nat. Commun. 2021; 12: 2835
  • 34 Suda M. Tetrahedron Lett. 1980; 21: 2555
  • 35 Kojima R, Akiyama S, Ito H. Angew. Chem. Int. Ed. 2018; 57: 7196
  • 36 Chen JL, Scott HK, Hesse MJ, Willis CL, Aggarwal VK. J. Am. Chem. Soc. 2013; 135: 5316
  • 37 Mueller WH. Angew. Chem. Int. Ed. 1969; 7: 482
  • 38 Morikawa T, Kumadaki I, Shiro M. Chem. Pharm. Bull. 1985; 33: 5144
  • 39 Maji B. Adv. Synth. Catal. 2019; 361: 3453
  • 40 Minegishi S, Loos R, Kobayashi S, Mayr H. J. Am. Chem. Soc. 2005; 127: 2641
  • 41 Minegishi S, Kobayashi S, Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
  • 42 Schaller HF, Tishkov AA, Feng X, Mayr H. J. Am. Chem. Soc. 2008; 130: 3012
  • 43 Fujita T, Kinoshita R, Takanohashi T, Suzuki N, Ichikawa J. Beilstein J. Org. Chem. 2017; 13: 2682
  • 44 Miller E, Kim S, Gibson K, Derrick S, Toste FD. J. Am. Chem. Soc. 2020; 142: 8946
  • 45 Jiang Q, Liang Y, Zhang Y, Zhao X. Org. Lett. 2020; 22: 7581
  • 46 Yang E, Reese MR, Humphrey JM. Org. Lett. 2012; 15: 3944
  • 47 Timperley CM, Waters MJ, Greenall JA. J. Fluorine Chem. 2006; 127: 249
  • 48 Li J, Xu C, Wei N, Wang M. J. Org. Chem. 2017; 82: 11348
  • 49 Orsi DL, Easley BJ, Lick AM, Altman RA. Org. Lett. 2017; 19: 1570
  • 50 Orsi DL, Yadav MR, Altman RA. Tetrahedron 2019; 75: 4325
  • 51 Sorrentino JP, Orsi DL, Altman RA. J. Org. Chem. 2020; 86: 2297
  • 52 Denés F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
  • 53 Oae S, Takata T, Hae Kim Y. Tetrahedron 1981; 37: 37
  • 54 Liu C, Zhu C, Cai Y, Jiang H. Angew. Chem. Int. Ed. 2021; 60: 12038
  • 55 Sharma R, Strelevitz TJ, Gao H, Clark AJ, Schildknegt K, Obach RS, Ripp SL, Spracklin DK, Tremaine LM, Vaz AD. N. Drug Metab. Dispos. 2012; 40: 625
  • 56 Mcalpine I, Tran-dube M, Wang F, Scales S, Matthews J, Collins MR, Nair SK, Nguyen M, Bian J, Alsina LM, Sun J, Zhong J, Warmus JS, O’Neill B. J. Org. Chem. 2015; 80: 7266
  • 57 Purrington S, Sheu K.-W. Tetrahedron Lett. 1992; 33: 3289
  • 58 Breugst M, Reissig H. Angew. Chem. Int. Ed. 2020; 59: 12293
  • 59 Loska R, Szachowicz K, Szydlik D. Org. Lett. 2013; 22: 5706
  • 60 Martel A, Dhal R, Dujardin G. Synlett 2009; 2492
  • 61 Lee C, Lin S. Synthesis 2000; 496
  • 62 Lee C, Lin S, Ke S. Tetrahedron 2007; 63: 120
  • 63 Wong HN. C, Hon M, Tse C, Yip Y, Tank J, Hudlicky T. Chem. Rev. 1989; 89: 165
  • 64 Dolbier WR. Top. Curr. Chem. 1997; 192: 97
  • 65 Tellier F, Sauvêtre R, Normant JF, Dromzee Y, Jeannin Y. J. Organomet. Chem. 1987; 331: 281
  • 66 Ka MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
  • 67 De Cock C, Piettre S, Lahousse F, Janousek Z, MerAnyi R, Vlehe HG. Tetrahedron 1985; 41: 4183
  • 68 Suda M. Tetrahedron Lett. 1981; 22: 2395
  • 69 Jin J, Zheng W, Xia H, Zhang F, Wang Y. Org. Lett. 2019; 21: 8414
  • 70 Liu X, Lin EE, Chen G, Li J, Liu P, Wang H. Org. Lett. 2019; 21: 8454
  • 71 Ashirbaev SS, Levin VV, Struchkova MI, Dilman AD. Fluorine Notes 2017; 115: 1
  • 72 Levin VV, Dilman AD. J. Org. Chem. 2019; 84: 8337
  • 73 Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. Chem. Sci. 2020; 11: 737
  • 74 Fedorov OV, Scherbinina SI, Levin VV, Dilman AD. J. Org. Chem. 2019; 84: 11068
  • 75 Chen G, Li C, Peng J, Yuan Z, Liu P, Liu X. Org. Biomol. Chem. 2019; 17: 8527
  • 76 Orsi DL, Douglas JT, Sorrentino JP, Altman RA. J. Org. Chem. 2020; 85: 10451
  • 77 Spier E, Neuenschwander U, Hermans I. Angew. Chem. Int. Ed. 2013; 52: 1581
  • 78 Nishinaga A, Yamato H, Abe T, Maruyama K, Matsuura T. Tetrahedron Lett. 1988; 29: 6309
  • 79 Lončarević D, Krstić J, Dostanić J, Manojlović D, Čupić Ž, Jovanović DM. Chem. Eng. J. 2010; 157: 181
  • 80 Talsi EP, Chinakov VD, Babenko VP, Sidelnikov VN, Zamaraev KI. Mol. Catal. 1993; 81: 215
  • 81 Nihei T, Iwai N, Matsuda T, Kitazume T. J. Org. Chem. 2005; 70: 5912
  • 82 Markl M, Schaper W, Ort O, Jakobi H, Braun R, Krautstrunk G, Sanft U, Bonin W, Stark H, Pasenok S, Cabrera I. WO 2000007998, 2000
  • 83 Kitazume T, Ohnogi T, Miyauchi H, Yamazaki T, Watanabe S. J. Org. Chem. 1989; 54: 5630
  • 84 Cai Y, Tan D, Zhang Q, Lv W, Li Q, Wang H. Chin. Chem. Lett. 2021; 32: 417
  • 85 Zhao H, Ariafard A, Lin Z. Organometallics 2006; 25: 812
  • 86 Zhang B, Zhang X. Chem. Commun. 2015; 52: 1238
  • 87 Yuan K, Feoktistova T, Cheong PH, Altman RA. Chem. Sci. 2021; 12: 1363
  • 88 Liu J, Yang J, Ferretti F, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2019; 58: 4690