Synthesis 2021; 53(23): 4375-4388
DOI: 10.1055/a-1545-6874
short review

Recent Advance in Iminyl Radical Triggered C–H and C–C Bond Functionalization of Oxime Esters via 1,5-HAT and β-Carbon Scission

Le Liu
,
Xin-Hua Duan
,
Li-Na Guo
L. Liu thanks the National Natural Science Foundation of China (21901199) and Xi’an Jiaotong University (7121192002) for financial support. L.-N. Guo thanks the National Natural Science Foundation of China (21971201) for financial support.


Abstract

The direct functionalization of C(sp3)–H and C(sp3)–C(sp3) bonds is considered as one of the most valuable synthetic strategies because of its high efficiency and step-economy for the rapid assembly of complex molecules. However, the relatively high bond disassociation energies (BDEs) and similar chemical environment lead to large obstacles in terms of low reactivity and selectivity. Using a radical-based strategy has proved to be an efficient approach to overcome these difficulties via a hydrogen atom transfer (HAT) process for selective C(sp3)–H functionalization and β-carbon scission for C(sp3)–C(sp3) bond derivatization. Oxime esters have emerged as outstanding precursors of iminyl radicals for versatile chemical transformations. This short review summaries the recent advances in site-specific C(sp3)–H functionalization and C(sp3)–C(sp3) bond cleavage starting from oxime esters by our group and pioneering work by others, mainly focusing on the reaction design as well as the reaction mechanism.

1 Introduction

2 C(sp3)–H Bond Functionalization via 1,5-HAT of Acyclic Oxime Esters­

2.1 1,5-HAT/Cyclization

2.2 1,5-HAT/C–C or C–Heteroatom Bond Formation

3 C(sp3)–C(sp3) Bond Functionalization via β-Carbon Scission of Cyclic Oxime Esters

3.1 β-Carbon Scission/C–C or C–Heteroatom Bond Formation

3.2 β-Carbon Scission/Cyclization

4 Conclusion and Outlook



Publication History

Received: 26 May 2021

Accepted after revision: 07 July 2021

Accepted Manuscript online:
07 July 2021

Article published online:
19 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on C(sp3)–H bond functionalization, see:
    • 1a Chen X, Engle KM, Wang DH, Yu J. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1b Lyons TW, Sanford M. Chem. Rev. 2010; 110: 1147
    • 1c Newhous T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 1d Mishira AA, Subhedar D, Bhanage BM. Chem. Rec. 2019; 19: 1829
    • 1e Stokerl S, Mencheno OG. Org. Chem. Front. 2016; 3: 277
    • 1f Wang L, Xiao J. Org. Chem. Front. 2016; 3: 635
    • 1g Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
    • 1h He C, Whitehurst WG, Gaunt M. Chem 2019; 5: 1031
    • 1i Liu Y, You T, Wang H, Tang Z, Zhou C, Che C. Chem. Soc. Rev. 2020; 49: 5310

      For selected examples, see:
    • 3a Gao P, Gu Y, Duan X.-H. Synthesis 2017; 49: 3407
    • 3b Yu J, Pan C. Chem. Commun. 2016; 52: 2220
    • 3c Patel OP, Nandwanna NK, Legosetja J, Das BC, Bhaskar C, Kumar A. Adv. Synth. Catal. 2020; 362: 4226
    • 3d Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
    • 3e Sarkar S, Cheung KP. S, Gevorgyen V. Chem. Sci. 2020; 11: 12974
    • 3f Chen W, Wei W. Asian J. Org. Chem. 2018; 7: 1429
    • 3g Jia K, Chen Y. Chem. Commun. 2018; 54: 6105
    • 3h Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654
    • 3i Lu Q, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 49
  • 5 Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th ed. John Wiley & Sons; Hoboken: 2007
  • 6 Hudson RF, Lawson AJ, Lucken EA. C. J. Chem. Soc. D 1971; 807
    • 7a Ginns IS, Symons MC. R. J. Chem. Soc., Dalton Trans. 1972; 185
    • 7b Symons MC. R. Tetrahedron 1973; 29: 1555
  • 8 Griller D, Mendenhall GD, Hoof WV, Ingold KU. J. Am. Chem. Soc. 1974; 96: 6068
    • 9a Wood DE, Lloyd RV, Pratt DW. J. Am. Chem. Soc. 1970; 92: 4115
    • 9b Symons MC. R. Tetrahedron 1973; 29: 615
    • 10a Forrester AR, Gill M, Sadd JS, Thomson RH. J. Chem. Soc., Chem. Commun. 1975; 291
    • 10b Forrester AR, Gill M, Thomson RH. J. Chem. Soc., Chem. Commun. 1976; 677
    • 10c Forrester AR, Gill M, Meyer CJ, Sadd JS, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 606
    • 10d Forrester AR, Gill M, Sadd JS, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 612
    • 10e Forrester AR, Gill M, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 616
    • 10f Forrester AR, Gill M, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 621
    • 10g Forrester AR, Gill M, Napier RJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 632
    • 10h Forrester AR, Gill M, Meyer CJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 637
    • 10i Forrester AR, Napier RJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 984
  • 11 Biovin J, Fouquet E, Schiano A.-M, Zard SZ. Tetrahedron 1994; 50: 1769
    • 12a Boivin J, Fouquet E, Zard SZ. J. Am. Chem. Soc. 1991; 113: 1055
    • 12b Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
    • 12c Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1994; 35: 249
    • 12d Boivin J, Schiano A.-M, Zard SZ. Tetrahedron Lett. 1992; 33: 7849
    • 13a Narasaka K, Kusama H, Yamashita Y, Sato H. Chem. Lett. 1993; 489
    • 13b Kusama H, Yamashita Y, Narasaka K. Chem. Lett. 1995; 5
    • 13c Uchiyama K, Hayashi Y, Narasaka K. Chem. Lett. 1998; 1261
    • 13d Tsutsui H, Narasaka K. Chem. Lett. 2001; 526
    • 13e Narasaka K, Kitamura M. Eur. J. Org. Chem. 2005; 4505
    • 14a Wappes WA, Nakafuku KM, Nagib DA. J. Am. Chem. Soc. 2017; 139: 10204
    • 14b Mou X, Chen X, Chen G, He G. Chem. Commun. 2018; 54: 515
    • 14c Xia P, Ye Z, Hu Y, Song D, Xiang H, Chen X, Yang H. Org. Lett. 2019; 21: 2658
    • 14d Wang P, He B, Cheng Y, Chen J, Xiao W.-J. Org. Lett. 2019; 21: 6924
    • 14e Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
    • 14f Li X, Yan X, Wang Z, He X, Dai Y, Yan X, Zhao D, Xu X. J. Org. Chem. 2020; 85: 2504
    • 14g Xiong P, Xu H. Acc. Chem. Res. 2019; 52: 3339
    • 15a Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
    • 15b Davies J, Morcill SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
    • 15c Yu X, Wang P, Yan D, Li B, Chen J, Xiao W.-J. Adv. Synth. Catal. 2018; 360: 3601

      For selected examples, see refs 2g, 13e, and:
    • 16a Kitamura M, Narasaka K. Chem. Rec. 2002; 2: 268
    • 16b Vessally E, Saeidian HA, Edjlali L, Bekhradnis A. Curr. Org. Chem. 2017; 21: 249
    • 17a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 17b Barton DH. R, Beaton JM. J. Am. Chem. Soc. 1960; 82: 2641
    • 17c Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
    • 18a Lee W, Jeon HJ, Jung KH, Kim D, Seo S, Chang S. Chem 2021; 7: 495
    • 18b Liu M, Shu W. ACS Catal. 2020; 10: 12960
    • 18c Roos CB, Demaerel J, Graff DE, Knowles RR. J. Am. Chem. Soc. 2020; 142: 5974
    • 18d Shatskiy A, Liu J, Kaerkaes KD. Chem 2021; 7: 283
    • 18e Kumar G, Pradhan S, Chatterjee I. Chem. Asian J. 2020; 15: 651
    • 19a Forrester AR, Napier RJ, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1981; 984
    • 19b Li Z, Torres-Ochoa RO, Wang Q, Zhu J. Nat. Commun. 2020; 11: 403
    • 19c Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2019; 57: 744
  • 20 Chen H, Chiba S. Org. Biomol. Chem. 2014; 12: 42
  • 21 Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org. Lett. 2017; 19: 1994
  • 22 Li Y, Mao R, Wu J. Org. Lett. 2017; 19: 4472
  • 23 Shu W, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1881
  • 24 Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 1881
  • 25 Jiang H, Studer A. Angew. Chem. Int. Ed. 2018; 57: 1692
  • 26 Zhang Y, Yin Z, Wu X.-F. Adv. Synth. Catal. 2019; 361: 3223
  • 27 Yin Z, Zhang Z, Zhang Y, Dixneuf PH, Wu X.-F. Chem. Commun. 2019; 55: 4655
  • 28 Shen X, Zhao J.-J, Yu S. Org. Lett. 2018; 20: 5523
  • 29 Chen L, Guo L.-N, Ma Z, Gu Y, Zhang J, Duan X.-H. J. Org. Chem. 2019; 84: 6475
  • 30 Ma Z, Guo L.-N, Gu Y, Chen L, Duan X.-H. Adv. Synth. Catal. 2018; 360: 4341
  • 31 Gu Y, Duan X.-H, Chen L, Ma Z, Gao P, Guo L.-N. Org. Lett. 2019; 21: 917
  • 32 Torres-Ochoa R, Leclair A, Wang Q, Zhu J. Chem. Eur. J. 2019; 25: 9477

    • For selected examples, see:
    • 33a Krylov IB, Segida OO, Budnikov AS, Terent’ev AO. Adv. Synth. Catal. 2021; 363: 2502
    • 33b Xiao T, Huang H, Anand D, Zhou L. Synthesis 2020; 52: 1585
    • 33c Jackman MM, Cai Y, Castle SL. Synthesis 2017; 49: 1785
    • 33d Xiao F, Guo Y, Zeng Y. Adv. Synth. Catal. 2021; 363: 120
    • 33e Huang H, Cai J, Deng G. Org. Biomol. Chem. 2016; 14: 1519
    • 33f Huang H, Ji X, Wu W, Jiang H. Chem. Soc. Rev. 2015; 44: 1155
    • 35a Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
    • 35b Nishimura T, Nishiguchi Y, Maeda Y, Uemura S. J. Org. Chem. 2004; 69: 5342
  • 36 Nishimura T, Yoshinaka T, Nishiguchi Y, Maeda Y, Uemura S. Org. Lett. 2005; 7: 2425
  • 37 Yang H.-B, Selander N. Chem. Eur. J. 2017; 23: 1779
  • 38 Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
  • 39 Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
  • 40 Zhao J.-F, Gao P, Duan X.-H, Guo L.-N. Adv. Synth. Catal. 2018; 360: 1775
  • 41 Zhao J.-F, Duan X.-H, Gu Y.-R, Gao P, Guo L.-N. Org. Lett. 2018; 20: 4614
  • 42 Min Q.-Q, Li N, Chen G.-L, Liu F. Org. Chem. Front. 2019; 6: 1200
  • 43 Tian L, Gao S, Wang R, Li Y, Tang C, Shi L, Fu J. Chem. Commun. 2019; 55: 5347
  • 44 Zhao B, Wang M, Shi Z. J. Org. Chem. 2019; 84: 10145
  • 45 Yang L, Zhang J.-Y, Duan X.-H, Gao P, Jiao J, Guo L.-N. J. Org. Chem. 2019; 84: 8615
    • 46a Mo F, Jiang Y, Qiu D, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 1846
    • 46b Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionove OV. J. Am. Chem. Soc. 2016; 138: 2985
    • 46c Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
    • 46d Cuenca AB, Shishido R, Ito H, Fernandez E. Chem. Soc. Rev. 2017; 46: 415
  • 47 Zhang J.-J, Duan X.-H, Wu Y, Yang J.-C, Guo L.-N. Chem. Sci. 2019; 10: 161

    • For selected examples, see:
    • 48a Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
    • 48b Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
    • 48c Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 48d Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
  • 50 Wu J, Zhang J.-J, Gao P, Xu S.-I, Guo L.-N. J. Org. Chem. 2018; 83: 1046
  • 51 Zhang J.-J, Duan X.-H, Yang J.-C, Guo L.-N. J. Org. Chem. 2018; 83: 4239
  • 52 Tang Y.-Q, Yang J.-C, Wang L, Fan M, Guo L.-N. Org. Lett. 2019; 21: 5178