CC BY-NC-ND 4.0 · Synthesis 2021; 53(21): 3963-3976
DOI: 10.1055/a-1541-1761
short review

Evaluating the Green Credentials of Flow Chemistry towards Industrial Applications

a   School of Chemistry, University College Dublin, Science Centre South, Dublin D04 N2E5, Ireland
,
Thomas S. Moody
b   Department of Technology, Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK
c   Arran Chemical Company, Monklands Industrial Estate, Athlone, Co. Roscommon N37 DN24, Ireland
,
Megan Smyth
b   Department of Technology, Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK
,
Scott Wharry
b   Department of Technology, Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK
› Author Affiliations
The authors gratefully acknowledge the financial support from Science Foundation Ireland under the SFI Industry Fellowship programme for the project entitled ‘Development of Continuous Biocatalysed Processes – Continuous Biocatalysed Chemicals (CATCH)’ (19/IFA/7420, to MB).


Abstract

Continuous flow chemistry is becoming an established technology platform that finds frequent application in industrial chemical manufacture with support and endorsements by the FDA for pharmaceuticals. Amongst the various advantages that are commonly cited for flow chemistry over batch processing, sustainability continues to require further advances and joint efforts by chemists and chemical engineers in both academia and industry. This short review highlights developments between 2015 and early 2021 that positively impact on the green credentials associated with flow chemistry, specifically when applied to the preparation of pharmaceuticals. An industrial perspective on current challenges is provided to whet discussion and stimulate further investment towards achieving greener modern synthetic technologies.

1 Introduction

2 Subject Areas and Relevant Case Studies

3 Industrial Outlook on Future Sustainability Driven through Continuous Manufacturing Approaches

4 Conclusions and Outlook



Publication History

Received: 03 June 2021

Accepted after revision: 30 June 2021

Accepted Manuscript online:
30 June 2021

Article published online:
16 August 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Guidi M, Seeberger PH, Gilmore K. Chem. Soc. Rev. 2020; 49: 8910
    • 1b Jensen KF. AIChE J. 2017; 63: 858
    • 1c Fitzpatrick DE, Battilocchio C, Ley SV. ACS Cent. Sci. 2016; 2: 131
    • 1d Gerardy R, Emmanuel N, Toupy T, Kassin VE, Tshibalonza NN, Schmitz M, Monbaliu J.-CM. Eur. J. Org. Chem. 2018; 2301
    • 2a Baumann M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020; 24: 1802
    • 2b Ley SV, Chen Y, Robinson A, Otter B, Godineau E, Battilocchio C. Org. Process Res. Dev. 2021; 25: 713
    • 2c Mallet-Sanz L, Susanne F. J. Med. Chem. 2012; 55: 4062
    • 2d Gioiello A, Piccinno A, Lozza AM, Cerra B. J. Med. Chem. 2020; 63: 6624
  • 4 Ley SV. Chem. Rec. 2012; 12: 378
    • 5a Williams JD, Kappe CO. Curr. Opin. Green Sustain. Chem. 2020; 25: 100351
    • 5b Dallinger D, Kappe CO. Curr. Opin. Green Sustain. Chem. 2017; 7: 6
    • 6a Rogers L, Jensen KF. Green Chem. 2019; 21: 3481
    • 6b Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
    • 7a Aguillón AR, Bezerra MA. de M, Gomez MR. B. P, de Souza RO. M. A. Continuous-Flow Chemistry toward Sustainable Chemical Synthesis. Green Sustainable Process for Chemical and Environmental Engineering and Science. Inamuddin Boddula R, Asiri AM. Elsevier; Amsterdam: 2020: 49-69
    • 7b Alfano AI, Brindisi M, Lange H. Green Chem. 2021; 23: 2233
    • 7c Vaccaro L, Lanari D, Marrocchi A, Strappaveccia G. Green Chem. 2014; 16: 3680
  • 8 https://www.chemistryworld.com/features/flow-chemistry-surges-forward/4013358.article (accessed May 29, 2021)
  • 9 Ciamician G. Science 1912; 36: 385
    • 10a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 10b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 10c Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
    • 11a Sambiago C, Nöel T. Trends Chem. 2020; 2: 92
    • 11b Di Filippo M, Bracken C, Baumann M. Molecules 2020; 25: 356
    • 11c Rehm TH. Chem. Eur. J. 2020; 26: 16952
  • 13 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
    • 14a Beatty JW, Douglas JJ, Cole KP, Stephenson CR. J. Nat. Commun. 2015; 6: 7919
    • 14b Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CR. J. Chem 2016; 1: 456
  • 15 Abdiaj I, Bottecchia C, Alcazar J, Nöel T. Synthesis 2017; 49: 4978
  • 16 Hyowon S, Aofei L, Jamison TF. J. Am. Chem. Soc. 2017; 139: 13969

    • For selected examples, please see:
    • 17a Emmanuel N, Mendoza C, Winter M, Horn CR, Vizza A, Dreesen L, Heinrichs B, Monbaliu J.-CM. Org. Process Res. Dev. 2017; 21: 1435
    • 17b Kong CJ, Fisher D, Desai BK, Yang Y, Ahmad S, Belecki K, Gupton BF. Bioorg. Med. Chem. 2017; 25: 6203
    • 17c Lee DS, Sharabi M, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George MW. Org. Process Res. Dev. 2020; 24: 201
  • 18 Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
  • 19 Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Angew. Chem. Int. Ed. 2018; 57: 4078
  • 20 Bonciolini S, Di Filippo M, Baumann M. Org. Biomol. Chem. 2020; 18: 9428
  • 21 Laudadio G, Deng Y, van der Wal K, Ravelli D, Nuño M, Fagnoni M, Guthrie D, Sun Y, Noël T. Science 2020; 369: 92
  • 22 Donnelly K, Baumann M. Chem. Commun. 2021; 57: 2871
  • 23 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
  • 24 Nöel T, Cao Y, Laudadio G. Acc. Chem. Res. 2019; 52: 2858
  • 25 Tanbouza N, Ollevier T, Lam K. iScience 2020; 23: 101720
  • 26 Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Angew. Chem. Int. Ed. 2017; 56: 15446
  • 27 Santi M, Seitz J, Cicala R, Hardwick T, Ahmed N, Wirth T. Chem. Eur. J. 2019; 25: 16230
  • 28 Vilé G, Schmidt G, Richard-Bildstein S, Abele S. J. Flow Chem. 2019; 9: 19
  • 29 Laudadio G, Barmpoutsis E, Schotten C, Struik L, Govaerts S, Browne DL, Nöel T. J. Am. Chem. Soc. 2019; 141: 5664
  • 30 Selt M, Franke R, Waldvogel SR. Org. Process Res. Dev. 2020; 24: 2347
    • 31a Britton J, Majumdar S, Weiss GA. Chem. Soc. Rev. 2018; 47: 5891
    • 31b Benítez-Mateos AI, Contente ML, Padrosa DR, Paradisi F. React. Chem. Eng. 2021; 6: 599
    • 31c De Santis P, Meyer L.-E, Kara S. React. Chem. Eng. 2020; 5: 2155
    • 31d Santi M, Sancineto L, Nascimento V, Braun Azeredo J, Orozco EV. M, Andrade LH, Gröger H, Santi C. Int. J. Mol. Sci. 2021; 22: 990
    • 32a Planchestainer M, Contente ML, Cassidy J, Molinari F, Tamborini L, Paradisi F. Green Chem. 2017; 19: 372
    • 32b Andrade LH, Kroutil W, Jamison TF. Org. Lett. 2014; 16: 6092
    • 32c Ho C.-H, Yi J, Wang X. ACS Sustainable Chem. Eng. 2019; 7: 1038
    • 32d Contente ML, Dall’Oglio F, Tamborini L, Molinari F, Pardisi F. ChemCatChem 2017; 9: 1
  • 33 Federsel H.-J, Moody TS, Taylor SJ. C. Molecules 2021; 26: 2822
  • 34 Xiao Y, Zheng M, Liu Z, Shi J, Huang F, Luo X. ACS Sustainable Chem. Eng. 2019; 7: 2056
  • 35 Goldhahn C, Taut JA, Schubert M, Burgert I, Chanana M. RSC Adv. 2020; 10: 20608
    • 36a Leslie A, Moody TS, Smyth M, Wharry S, Baumann M. Beilstein J. Org. Chem. 2021; 17: 379
    • 36b Baumann M, Leslie A, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2021; 25: 452
    • 37a Britton J, Raston CL. Chem. Soc. Rev. 2017; 46: 1250
    • 37b Jiao J, Nie W, Yu T, Yang F, Zhang Q, Aihemaiti F, Yang T, Liu X, Wang J, Li P. Chem. Eur. J. 2021; 27: 4817
  • 38 Britton J, Jamison TF. Angew. Chem. Int. Ed. 2017; 56: 8823
  • 39 Lin H, Dai C, Jamison TF, Jensen KF. Angew. Chem. Int. Ed. 2017; 56: 8870
  • 40 Kassin V.-EH, Gerardy R, Toupy T, Collin D, Salvadeo E, Toussaint F, Van Hecke K, Monbaliu J.-CM. Green Chem. 2019; 21: 2952
  • 41 Di Filippo M, Baumann M. Eur. J. Org. Chem. 2020; 6199
    • 42a Mallia CJ, Baxendale IR. Org. Process Res. Dev. 2016; 20: 327
    • 42b Brzozowski M, O’Brien M, Ley SV, Polyzos A. Acc. Chem. Res. 2015; 48: 349
    • 42c Hone CA, Kappe CO. Eur. J. Org. Chem. 2020; 13108
    • 42d Hone CA, Kappe CO. Top. Curr. Chem. 2019; 377: 2
  • 43 Pye SJ, Dalgarno SJ, Chalker JM, Raston CL. Green Chem. 2018; 20: 118
  • 44 Guo S, Yu Z, Yu C. Org. Process Res. Dev. 2018; 22: 252
  • 45 Saito Y, Kobayashi S. J. Am. Chem. Soc. 2020; 142: 16546
  • 46 Prieschl M, Garcia-Lacuna J, Munday R, Leslie K, O’Kearney-McMullan A, Hone CA, Kappe CO. Green Chem. 2020; 22: 5762
  • 47 https://ec.europa.eu/environment/chemicals/reach/reach_en.htm (accessed August 9, 2021)
  • 48 https://www.forbes.com/sites/cognitiveworld/2020/12/26/the-increasing-use-of-ai-in-the-pharmaceutical-industry/ (accessed August 9, 2021)
  • 49 https://assets.kpmg/content/dam/kpmg/uk/pdf/2019/04/reshaping-the-future-of-pharma.pdf (accessed August 9, 2021)
  • 50 Scott, M. New York Times, July 15, 2014 (accessed August 9, 2021); https://www.nytimes.com/2014/07/16/business/international/novartis-joins-with-google-to-develop-contact-lens-to-monitor-blood-sugar.html
  • 51 Roger L, Jensen KF. Green Chem. 2019; 21: 3481
  • 52 Sheldon RA. ACS Sustainable Chem. Eng. 2018; 6: 32
  • 53 Sheldon RA. Green Chem. 2007; 9: 1273
  • 54 Sheldon RA. Green Chem. 2017; 19: 18
  • 55 Falß S, Kloye N, Holtkamp ML, Prokofyeva A, Bieringer T, Kockmann N. Green Chemical Engineering . In Handbook of Green Chemistry, Vol. 12. Lapkin A. Wiley-VCH; Weinheim: 2019: 153
  • 56 Amini-Rentsch L, Vanoli E, Richard-Bildstein S, Marti R, Vile G. Ind. Eng. Chem. Res. 2019; 58: 10164
  • 57 Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J. Med. Chem. 2019; 62: 4265
  • 58 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
  • 59 Larock RC, Babu S. Tetrahedron Lett. 1987; 28: 5291
  • 60 Schafer G, Ahmetovic M, Abele S. Org. Lett. 2017; 19: 6578
  • 61 Ren H, Maloney KM, Basu K, Di Maso MJ, Humphrey GR, Peng F, Desmond R, Otte DA. L, Alwedi E, Liu W, Zhang S.-W, Song S, Arvary RA, Zompa MA, Lehnherr D, Martin GE, Chang HY. D, Mohan AE, Guzman FJ, Jellet L, Lee AY, Spencer G, Fisher ES, Naber JR, Gao H, Lohani S, Ruck RT, Campeau L.-C. Org. Process Res. Dev. 2020; 24: 2445
  • 62 Dvorak CA, Green KL, Lee GR. WO 2008040652, 2008
  • 63 Bedard A.-C, Longstreet AR, Britton J, Wang Y, Moriguchi H, Hicklin RW, Green WH, Jamison TF. Bioorg. Med. Lett. 2017; 25: 6233