Synthesis 2021; 53(23): 4327-4340
DOI: 10.1055/a-1533-3597
short review

Recent Advances in Visible-Light-Promoted Copper Catalysis in Organic Reactions

Yang Xiong
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Sijia Li
a   College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Haijing Xiao
a   College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Guozhu Zhang
a   College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (NSFC-22071073, 21772218, and 21821002), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and the State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry.


Abstract

In recent years, visible-light-mediated copper photocatalysis has emerged as an attractive strategy for the diverse construction of basic bonds in an ecologically benign and cost-effective fashion. The intense activity in these areas has been stimulated by the distinctive properties of copper photocatalysts and has led to the rapid development and expansion of their applications. In this review, we focus on a series of significant achievements in the use of copper complexes as standalone photocatalysts in organic reactions to exhibit their high flexibility and potential in synthetic chemistry.

1 Introduction

2 Redox Coupling Reactions

2.1 Carbon–Nitrogen Redox Coupling Reactions

2.2 Carbon–Carbon Redox Coupling Reactions

3 Oxidative Coupling Reactions

4 Difunctionalization of Olefins

5 C–H Bond Functionalization

6 Radical Alkylation of Imines

7 Conclusions and Outlook



Publication History

Received: 10 April 2021

Accepted after revision: 22 June 2021

Accepted Manuscript online:
22 June 2021

Article published online:
27 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Current address: Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
  • 2 Zimmerman HE. Pure Appl. Chem. 2006; 78: 2193
    • 3a König B. Eur. J. Org. Chem. 2017; 1979
    • 3b Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 3c Zho Q, Zou Y, Lu L, Xiao W. Angew. Chem. Int. Ed. 2019; 58: 1586
    • 4a Xuan J, Xiao W. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 4b Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 4c Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 4d Liu Q, Wu L. Natl. Sci. Rev. 2017; 4: 359
    • 5a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 5b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5c Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 5d Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
    • 5e Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 5f Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 5g Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 5h Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 6a Paria S, Reiser O. ChemCatChem 2014; 6: 2477
    • 6b Fumagalli G, Rabet PT. G, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
    • 6c Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
    • 8a Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713
    • 8b Cheng W, Shang R. ACS Catal. 2020; 10: 9170
    • 9a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 9b Fischer C, Koenig B. Beilstein J. Org. Chem. 2011; 7: 59
    • 9c Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 9d Liang Y, Zhang X, MacMillan DW. C. Nature 2018; 559: 83
  • 10 Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
  • 11 Creutz SE, Lotito KJ, Fu GC, Peters JC. Science 2012; 338: 647
    • 12a Uyeda C, Tan Y, Fu GC, Peters JC. J. Am. Chem. Soc. 2013; 135: 9548
    • 12b Bissember AC, Lundgren RJ, Creutz SE, Peters JC, Fu GC. Angew. Chem. Int. Ed. 2013; 52: 5129
    • 12c Ziegler DT, Choi J, Muñoz-Molina JM, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2013; 135: 13107
    • 12d Do HQ, Bachman S, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2014; 136: 2162
    • 12e Tan Y, Muñoz-Molina JM, Fu GC, Peters JC. Chem. Sci. 2014; 5: 2831
    • 12f Ratani TS, Bachman S, Fu GC, Peters JC. J. Am. Chem. Soc. 2015; 137: 13902
    • 12g Ahn JM, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 18101
  • 13 Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science 2016; 351: 681
  • 14 Ahn JM, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 18101
  • 15 Zhao W, Wurz RP, Peters JP, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
  • 16 Matier CD, Schwaben J, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 17707
  • 17 Lu B, Cheng Y, Chen LY, Chen JR, Xiao W. ACS Catal. 2019; 9: 8159
  • 18 Dong X, Zhang Y, Ma C, Gu Q, Wang F, Li Z, Jiang S, Liu X. Nat. Chem. 2019; 11: 1158
  • 19 Hazra A, Lee MT, Chiu JF, Lalic G. Angew. Chem. Int. Ed. 2018; 57: 5492
  • 20 Mao Y, Zhao WX, Lu S, Yu L, Wang Y, Liang Y, Ni SY, Pan Y. Chem. Sci. 2020; 11: 4939
  • 21 Xia H, Li Z, Gu Q, Dong X, Fang J, Du X, Wang L, Liu X. Angew. Chem. Int. Ed. 2020; 59: 16926
  • 22 Liang L, Niu H, Li R, Wang Y, Yan J, Li C, Hai M. Org. Lett. 2020; 22: 6842
  • 23 Minozzi C, Caron A, Grenier-Petel JC, Santandrea J, Collins SK. Angew. Chem. Int. Ed. 2018; 57: 5477
  • 24 Caron A, Morin É, Collins SK. ACS Catal. 2019; 9: 9458
    • 25a Sagadevan A, Hwang KC. Adv. Synth. Catal. 2012; 354: 3421
    • 25b Sagadevan A, Ragupathi A, Hwang KC. Angew. Chem. Int. Ed. 2015; 54: 13896
    • 25c Sagadevan A, Ragupathi A, Lin C, Hwu JR, Hwang KC. Green Chem. 2015; 17: 1113
    • 25d Sagadevan A, Charpe VP, Hwang KC. Catal. Sci. Technol. 2016; 6: 7688
  • 26 Sagadevan A, Lyu PC, Hwang KC. Green Chem. 2016; 18: 4526
  • 27 Sagadevan A, Charpe VP, Ragupathi A, Hwang KC. J. Am. Chem. Soc. 2017; 139: 2896
  • 28 Das DK, Pampana VK, Hwang KC. Chem. Sci. 2018; 9: 7318
  • 29 Sagadevan A, Pampana VK, Hwang KC. Angew. Chem. Int. Ed. 2019; 58: 3838
  • 30 Charpe VP, Sagadevan A, Hwang KC. Green Chem. 2020; 22: 4426
  • 31 Lan X, Wang N, Xing Y. Eur. J. Org. Chem. 2017; 5821
    • 32a Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
    • 32b Paria S, Pirtsch M, Kais V, Reiser O. Synthesis 2013; 45: 2689
    • 32c Bagal DB, Kachkovskyi G, Knorn M, Rawner T, Bhanage BM, Reiser O. Angew. Chem. Int. Ed. 2015; 54: 6999
    • 32d Knorn M, Rawner T, Czerwieniec R, Reiser O. ACS Catal. 2015; 5: 5186
  • 33 Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; in press DOI: 10.1002/anie.202100270.
  • 34 Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, Reiser O. Angew. Chem. Int. Ed. 2018; 57: 8288
  • 35 Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950
  • 36 Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal. 2019; 9: 1103
  • 37 Engl S, Reiser O. ACS Catal. 2020; 10: 9899
    • 38a Fayad R, Engl S, Danilov EO, Hauke CE, Reiser O, Castellano FN. J. Phys. Chem. Lett. 2020; 11: 5345
    • 38b Engl S, Reiser O. Eur. J. Org. Chem. 2020; 1523
  • 39 Kochi JK. J. Am. Chem. Soc. 1962; 84: 2121
  • 40 Lian P, Long W, Li J, Zheng Y, Wan X. Angew. Chem. Int. Ed. 2020; 59: 23603
  • 41 Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
  • 42 Liu Z, Chen H, Lv Y, Tan X, Shen H, Yu H, Li C. J. Am. Chem. Soc. 2018; 140: 6169
  • 43 He J, Chen C, Fu GC, Peters JC. ACS Catal. 2018; 8: 11741
    • 46a Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Org. Lett. 2020; 22: 1490
    • 46b Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. ACS Catal. 2019; 9: 4470
  • 47 Yu X, Zhao Q, Chen J, Chen J, Xiao W. Angew. Chem. Int. Ed. 2018; 57: 15731
  • 48 Chen J, He B, Wang P, Yu X, Zhao Q, Chen J, Xiao W. Org. Lett. 2019; 21: 4359
  • 49 Lou J, Ma J, Xu BH, Zhou Y, Yu Z. Org. Lett. 2020; 22: 5202
  • 50 Lei W, Wang T, Feng K, Wu L, Liu Q. ACS Catal. 2017; 7: 7941
  • 52 Rabet PT. G, Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2016; 18: 1646
  • 53 Nicholls TP, Constable GE, Robertson JC, Gardiner MG, Bissember AC. ACS Catal. 2016; 6: 451
  • 54 Meng Q, Gao X, Lei T, Liu Z, Zhan F, Li Z, Zhong J, Xiao H, Feng K, Chen B, Tao Y, Tung C, Wu L. Sci. Adv. 2017; 3: e1700666
  • 55 Song Z, Liu Z, Gan Q, Lei T, Tung C, Wu L. Org. Lett. 2020; 22: 832
  • 56 Michelet B, Deldaele C, Kajouj S, Moucheron C, Evano G. Org. Lett. 2017; 19: 3576
  • 57 Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew. Chem. Int. Ed. 2018; 57: 15841
  • 58 Lyu X, Huang S, Song H, Liu Y, Wang Q. Org. Lett. 2019; 21: 5728
  • 59 Wang C, Yu Y, Liu W, Duan W. Org. Lett. 2019; 21: 9147
  • 60 Zheng L, Jiang Q, Bao H, Zhou B, Luo S, Jin H, Wu H, Liu Y. Org. Lett. 2020; 22: 8888
    • 61a Li C, Chen B, Ma X, Mo X, Zhang G. Angew. Chem. Int. Ed. 2021; 60: 2130
    • 61b Ma X, Zhang G. Chin. J. Chem. 2020; 38: 1299
  • 62 Cao Z, Li J, Sun Y, Zhang H, Mo X, Cao X, Zhang G. Chem. Sci. 2021; 12: 4836
  • 63 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
  • 64 Han B, Li YJ, Yu Y, Gong L. Nat. Commun. 2019; 10: 3804