Synthesis 2021; 53(23): 4341-4352
DOI: 10.1055/a-1533-3085
short review

Recent Advances in the Construction of Quaternary Stereocenters via Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation

Xinhui Yu
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. of China
,
Ting Zhang
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. of China
,
Jitian Liu
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. of China
,
Xiaoxun Li
a   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. of China
b   Suzhou Institute of Shandong University, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, P. R. of China
› Author Affiliations
The research was funded by the National Natural Science Foundation of China (21901142), the Natural Science Foundation of Shandong Province (ZR2019QB001, ZR2020QB017), the Natural Science Foundation of Jiangsu Province (BK20180227), and the Fundamental Research Fund of Shandong University (21310082164009, 21310088963023, 2020QNQT007, 2020QNQT009).


Abstract

Palladium-catalyzed decarboxylative asymmetric allylic alkylation (DAAA) provides an efficient and powerful strategy to construct quaternary stereocenters, which are widely present in biologically active natural products and approved drugs. In this short review, we summarize recent developments (since 2018) in the facile synthesis of quaternary stereocenters via DAAA methods. Several representative examples of the use of DAAA strategies for the total synthesis of complex natural products further demonstrate its synthetic potential in the realm of organic and medicinal chemistry.

1 Introduction

2 Construction of Quaternary Stereocenters via Palladium Catalyzed DAAA

3 Construction of Quaternary Stereocenters via Pd-Catalyzed Interceptive DAAA

4 Application of DAAA in Natural Product Synthesis

5 Conclusion



Publication History

Received: 22 May 2021

Accepted after revision: 22 June 2021

Accepted Manuscript online:
22 June 2021

Article published online:
22 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
  • 2 Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
  • 3 Juncosa JI. Jr, Hansen M, Bonner LA, Cueva JP, Maglathlin R, McCorvy JD, Marona-Lewicka D, Lill MA, Nichols DE. ACS Chem. Neurosci. 2013; 4: 96
  • 4 Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
  • 5 Trost BM, Jiang C. Synthesis 2006; 369
  • 6 Wang B, Tu YQ. Acc. Chem. Res. 2011; 44: 1207
  • 7 Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156
  • 8 Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
  • 9 Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 48: 740
  • 10 Shockley SE, Holder JC, Stoltz BM. Org. Process Res. Dev. 2015; 19: 974
  • 11 Long R, Huang J, Gong J, Yang Z. Nat. Prod. Rep. 2015; 32: 1584
  • 12 Bera S, Chatterjee B, Mondal D. RSC Adv. 2016; 6: 77212
  • 13 Pandey G, Mishra A, Khamrai J. Tetrahedron 2018; 74: 4903
  • 14 Chen L. Synthesis 2018; 50: 440
  • 15 Christoffers J, Baro A. Adv. Synth. Catal. 2005; 347: 1473
  • 16 Quasdorf KW, Overman LE. Nature 2014; 516: 181
  • 17 Trost BM, Schultz JE. Synthesis 2019; 51: 1
  • 18 Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
  • 19 Wang Z. Org. Chem. Front. 2020; 7: 3815
  • 20 Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
  • 21 Burger EC, Tunge JA. Org. Lett. 2004; 6: 4113
  • 22 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
  • 23 Hong AY, Stoltz BM. Eur. J. Org. Chem. 2013; 2745
  • 24 James J, Jackson M, Guiry PJ. Adv. Synth. Catal. 2019; 361: 3016
  • 25 Süsse L, Stoltz BM. Chem. Rev. 2021; 121: 4084
  • 26 Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4375
  • 27 Mohr JT, Behenna DC, Harned AM, Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
  • 28 Behenna DC, Liu Y, Yurino T, Kim J, White DE, Virgil SC, Stoltz BM. Nat. Chem. 2012; 4: 130
  • 29 Duquette DC, Cusumano AQ, Lefoulon L, Moore JT, Stoltz BM. Org. Lett. 2020; 22: 4966
  • 30 Trost BM, Nagaraju A, Wang F, Zuo Z, Xu J, Hull KL. Org. Lett. 2019; 21: 1784
  • 31 Sercel ZP, Sun AW, Stoltz BM. Org. Lett. 2019; 21: 9158
  • 32 Trost BM, Schultz JE, Bai Y. Angew. Chem. Int. Ed. 2019; 58: 11820
  • 33 Sun AW, Hess SN, Stoltz BM. Chem. Sci. 2019; 10: 788
  • 34 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 35 Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
  • 36 Lu Y, Goldstein EL, Stoltz BM. Org. Lett. 2018; 20: 5657
  • 37 Zhu D, Gu Y, Lu L, Shen Q. J. Am. Chem. Soc. 2015; 137: 10547
  • 38 Arimori S, Matsubara O, Takada M, Shiro M, Shibata NR. Soc. Open Sci. 2016; 3: 160102
  • 39 Kondo H, Maeno M, Sasaki K, Guo M, Hashimoto M, Shiro M, Shibata N. Org. Lett. 2018; 20: 7044
  • 40 Roy A, Das MK, Chaudhuri S, Bisai A. J. Org. Chem. 2018; 83: 403
  • 41 Inanaga K, Wollenburg M, Bachman S, Hafeman NJ, Stoltz BM. Chem. Sci. 2020; 11: 11068
  • 42 Rios R. Chem. Soc. Rev. 2012; 41: 1060
  • 43 Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
  • 44 Ngamnithiporn A, Iwayama T, Bartberger MD, Stoltz BM. Chem. Sci. 2020; 11: 7390
  • 45 Lavernhe R, Alexy EJ, Zhang H, Stoltz BM. Org. Lett. 2020; 22: 4272
  • 46 Lavernhe R, Alexy EJ, Zhang H, Stoltz BM. Adv. Synth. Catal. 2020; 362: 344
  • 47 Cao M.-Y, Ma B.-J, Lao Z.-Q, Wang H, Wang J, Liu J, Xing K, Huang Y.-H, Gan K.-J, Gao W, Wang H, Hong X, Lu H.-H. J. Am. Chem. Soc. 2020; 142: 12039
  • 48 O’Broin CQ, Guiry PJ. Org. Lett. 2019; 21: 5402
  • 49 Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
  • 50 Park J.-U, Ahn H.-I, Cho H.-J, Xuan Z, Kim JH. Adv. Synth. Catal. 2020; 362: 1836
  • 51 Khan I, Zhao C, Zhang YJ. Chem. Commun. 2018; 54: 4708
  • 52 Liu K, Khan I, Cheng J, Hsueh YJ, Zhang YJ. ACS Catal. 2018; 8: 11600
  • 53 Wei Y, Liu S, Li M.-M, Li Y, Lan Y, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2019; 141: 133
  • 54 Khan A, Zhao H, Zhang M, Khan S, Zhao D. Angew. Chem. Int. Ed. 2020; 59: 1340
  • 55 Wang Y, Chai J, You C, Zhang J, Mi X, Zhang L, Luo S. J. Am. Chem. Soc. 2020; 142: 3184
  • 56 Zheng Y, Qin T, Zi W. J. Am. Chem. Soc. 2021; 143: 1038
  • 57 De N, Yoo EJ. ACS Catal. 2018; 8: 48
  • 58 Li T.-R, Wang Y.-N, Xiao W.-J, Lu L.-Q. Tetrahedron Lett. 2018; 59: 1521
  • 59 Jia Z.-L, An X.-T, Deng Y.-H, Pang L.-H, Liu C.-F, Meng L.-L, Xue J.-K, Zhao X.-H, Fan C.-A. Org. Lett. 2021; 23: 745
  • 60 Gao C, Wang X, Liu J, Li X. ACS Catal. 2021; 11: 2684
  • 61 Yet L. Chem. Rev. 2000; 100: 2963
  • 62 Yang L.-C, Wang Y.-N, Liu R, Luo Y, Ng XQ, Yang B, Rong Z.-Q, Lan Y, Shao Z, Zhao Y. Nat. Chem. 2020; 12: 860
  • 63 McFadden RM, Stoltz BM. J. Am. Chem. Soc. 2006; 128: 7738
  • 64 Defieber C, Mohr JT, Grabovyi GA, Stoltz BM. Synthesis 2018; 50: 4359
  • 65 Park E, Cheon C.-H. Adv. Synth. Catal. 2019; 361: 4888
  • 66 Harned AM, Stoltz BM. Tetrahedron 2019; 75: 3166
  • 67 Xu H, Huang H, Zhao C, Song C, Chang J. Org. Lett. 2019; 21: 6457
  • 68 Fulton TJ, Chen AY, Bartberger MD, Stoltz BM. Chem. Sci. 2020; 11: 10802
  • 69 Reimann CE, Ngamnithiporn A, Hayashida K, Saito D, Korch KM, Stoltz BM. Angew. Chem. Int. Ed. 2021; in press DOI: 10.1002/anie.202106184.
  • 70 Zhou F, Zhu L, Pan B.-W, Shi Y, Liu Y.-L, Zhou J. Chem. Sci. 2020; 11: 9341