Synthesis 2021; 53(21): 4004-4019
DOI: 10.1055/a-1523-1551
feature

Homologation of Alkyl Acetates, Alkyl Ethers, Acetals, and Ketals by Formal Insertion of Diazo Compounds into a Carbon–Carbon Bond

Fei Wang
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Junyi Yi
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
,
Makoto Yasuda
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was supported by JST CREST Grant Number JPMJCR20R3, Japan. It was also supported by JSPS KAKENHI grant numbers JP18K19079, JP18H01977, and JP19K05455. F.W. acknowledges support from China Scholarship Council (CSC) under the Grant CSC number 201906420088.


Abstract

Homologation of alkyl acetates, alkyl ethers, acetals, and ketals was accomplished via formal insertion of diazo esters into carbon–carbon σ-bonds. The combined Lewis acid InI3 with Me3SiBr catalyzed the homologation of alkyl acetates and alkyl ethers. That of acetals and ketals was catalyzed solely by the use of InBr3. The key point of the homologation mechanism is that the indium-based Lewis acids have the appropriate amount of Lewis acidity to achieve both the abstraction and release of leaving groups. The abstraction of a leaving group by an indium-based Lewis acid and the electrophilic addition of carbocation or oxonium intermediates to diazo esters followed by the rearrangement of carbon substituents provide the corresponding cation intermediates. Finally, the leaving group that is captured by the Lewis acid bonds with cation intermediates to furnish the homologated products.

Supporting Information



Publication History

Received: 27 April 2021

Accepted after revision: 04 June 2021

Accepted Manuscript online:
04 June 2021

Article published online:
12 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Homologation via one-carbon-insertion into C–C σ-bonds:
    • 1a Xia Y, Liu Z, Ge R, Ye F, Hossain M, Zhang Y, Wang J. J. Am. Chem. Soc. 2014; 136: 3013
    • 1b Yada A, Fujita S, Murakami M. J. Am. Chem. Soc. 2014; 136: 7217
    • 1c Liu Z, Sivaguru P, Zanoni G, Anderson EA, Bi X. Angew. Chem. Int. Ed. 2018; 57: 8927
    • 1d Liu Z, Zhang X, Virelli M, Zanoni G, Anderson EA, Bi X. iScience 2018; 8: 54

    • A review:
    • 1e Candeias NR, Paterna R, Gois PM. P. Chem. Rev. 2016; 116: 2937

      Reviews for homologation via one-carbon-insertion into X–H (X = C, O, S, N, etc.) bonds:
    • 2a Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 2b Katritzky AR, Bobrov S. ARKIVOC 2005; (x): 174
    • 2c Thomas SP, French RM, Jheengut V, Aggarwal VK. Chem. Rec. 2009; 9: 24
    • 2d Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 2e Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 2f Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
    • 2g Egger J, Carreira EM. Nat. Prod. Rep. 2014; 31: 449
    • 2h Lombard FJ, Coster MJ. Org. Biomol. Chem. 2015; 13: 6419
    • 2i Castoldi L, Monticelli S, Senatore R, Ielo L, Pace V. Chem. Commun. 2018; 54: 6692
  • 3 Homologation via one-carbon-insertion into a C–B bond: Bomio C, Kabeshov MA, Lit AR, Lau SH, Ehlert J, Battilocchio C, Ley SV. Chem. Sci. 2017; 8: 6071

    • Reviews for use of diazo compounds as a one-carbon-source:
    • 4a Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091
    • 4b Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . Wiley-Interscience; New York: 1998
    • 4c Zhang Z, Wang J. Tetrahedron 2008; 64: 6577
    • 4d Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 4e Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 4f Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 4g Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 4h Liu Z, Wang J. J. Org. Chem. 2013; 78: 10024
    • 4i Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
    • 4j Guttenberger N, Breinbauer R. Tetrahedron 2017; 73: 6815
    • 5a Kanemasa S, Kanai T, Araki T, Wada E. Tetrahedren Lett. 1999; 40: 5055
    • 5b Dudley ME, Morshed MM, Brennan CL, Islam MS, Ahmad MS, Atuu M, Branstetter B, Hossain MM. J. Org. Chem. 2004; 69: 7599
    • 5c Dudley ME, Morshed MM, Hossain MM. Synthesis 2006; 1711
    • 5d Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc. 2008; 130: 2434
    • 5e Fructos MR, Díaz-Requejo MM, Pérez PJ. Chem. Commun. 2009; 5153
    • 5f Alves LG, Dazinger G, Veiros LF, Kirchner K. Eur. J. Inorg. Chem. 2010; 3160
    • 5g Levesque P, Fournier P. J. Org. Chem. 2010; 75: 7033
    • 5h Gao L, Kang BC, Ryu DH. J. Am. Chem. Soc. 2013; 135: 14556
    • 5i Tan F, Pu M, He J, Li J, Yang J, Dong S, Liu X, Wu YD, Feng X. J. Am. Chem. Soc. 2021; 143: 2394
  • 6 Cheng reported rhodium-catalyzed formal insertion of O–C(sp3)–C(sp2) into C–C σ-bonds of 1,3-dicarbonyl compounds using diazo esters and DMF: Ba D, Wen S, Tian Q, Chen Y, Lv W, Cheng G. Nat. Commun. 2020; 11: 4219
  • 7 Doyle MP, Trudell ML, Terpstra JW. J. Org. Chem. 1983; 48: 5146
  • 8 Ring expansion of cyclic acetals with diazo esters catalyzed by Me3SiOTf: Courant T, Pasco M, Lecourt T. Org. Lett. 2018; 20: 2757
    • 9a Gini A, Bamberger J, Luis-Barrera J, Zurro M, Mas-Ballesté R, Alemán J, Mancheño OG. Adv. Synth. Catal. 2016; 358: 4049
    • 9b Stockerl S, Danelzik T, Piekarski DG, Mancheño OG. Org. Lett. 2019; 21: 4535
  • 10 Stopka T, Marzo L, Zurro M, Janich S, Würthwein EU, Daniliuc CG, Alemán J, Mancheño OG. Angew. Chem. Int. Ed. 2015; 54: 5049
    • 11a Saito T, Yasuda M, Baba A. Synlett 2005; 1737
    • 11b Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2006; 71: 8516
    • 11c Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2007; 72: 8588
    • 11d Onishi Y, Nishimoto Y, Yasuda M, Baba A. Chem. Lett. 2011; 40: 1223
    • 11e Onishi Y, Nishimoto Y, Yasuda M, Baba A. Org. Lett. 2011; 13: 2762
  • 12 CCDC 2075523 (3aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 13 Liu C, Sang S, Chen F, Yan Y, Zhang C, Huang W. J. Phys. Org. Chem. 2019; 32: e3902
    • 14a Onishi Y, Nishimoto Y, Yasuda M, Baba A. Org. Lett. 2014; 16: 1176
    • 14b Nishimoto Y, Nishimura T, Yasuda M. Chem. Eur. J. 2015; 21: 8301
    • 14c Nishimoto Y, Okita A, Baba A, Yasuda M. Molecules 2016; 21: 1330
    • 14d Nishimoto Y, Kita Y, Ueda H, Imaoka H, Chiba K, Yasuda M, Baba A. Chem. Eur. J. 2016; 22: 11837
    • 14e Kita Y, Yata T, Nishimoto Y, Yasuda M. J. Org. Chem. 2018; 83: 740
    • 14f Nakao S, Saikai M, Nishimoto Y, Yasuda M. Eur. J. Org. Chem. 2021; 77

      Indium-catalyzed transformation of acetals:
    • 15a Ranu BC, Das A, Samanta S. Synlett 2002; 727
    • 15b Gregg BT, Golden KC, Quinn JF. J. Org. Chem. 2007; 72: 5890

      Reviews for indium-catalyzed organic reactions:
    • 16a Yadav JS, Antony A, George J, Reddy BV. S. Eur. J. Org. Chem. 2010; 591
    • 16b Yang Y.-S, Wang S.-W, Long Y. Curr. Org. Chem. 2016; 20: 2865
    • 16c Sestelo JP, Sarandeses LA, Martínez MM, Alonso-Marañón L. Org. Biomol. Chem. 2018; 16: 5733
  • 18 Mamidi N, Manna D. J. Org. Chem. 2013; 78: 2386
  • 19 Laurent M, Marchand-Brynaert J. Synthesis 2000; 667
  • 20 Sakai N, Moriya T, Konakahara T. J. Org. Chem. 2007; 72: 5920
  • 21 Estopiñá-Durán S, Donnelly LJ, Mclean EB, Hockin BM, Slawin AM. Z, Taylor JE. Chem. Eur. J. 2019; 25: 3950
  • 22 Redwan IN, Grøtli M. J. Org. Chem. 2012; 77: 7071
  • 23 Nag E, Gorantla SM. N. V. T, Arumugam S, Kulkarni A, Mondal KC, Roy S. Org. Lett. 2020; 22: 6313
  • 24 Hodgson DM, Angrish D. Chem. Eur. J. 2007; 13: 3470
  • 25 Davis OA, Croft RA, Bull JA. Chem. Commun. 2015; 51: 15446
  • 26 Luo X, Chen G, He L, Huang X. J. Org. Chem. 2016; 81: 2943
  • 27 Ye F, Wang C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 11625
  • 28 Luo X, Chen G, He L, Huang X. J. Org. Chem. 2016; 81: 2943
  • 29 Costin TA, Dutra LG, Bortoluzzi AJ, Sá MM. Tetrahedron 2017; 73: 4549
  • 30 Meng L, Wu P, Fang J, Xiao Y, Xiao X, Tu G, Ma X, Teng S, Zeng J, Wan Q. J. Am. Chem. Soc. 2019; 141: 11775
  • 31 Korneev S, Richter C. Synthesis 1995; 1248
  • 32 Baxter M, Bolshan Y. Chem. Eur. J. 2015; 21: 13535
  • 33 Zhang M, Wang Y, Yang Y, Hua X. Adv. Synth. Catal. 2012; 354: 981
  • 34 Xavier T, Rayapin C, Gall EL, Presset M. Chem. Eur. J. 2019; 25: 13824
  • 35 Kawajiri T, Kato M, Nakata H, Goto R, Aibara S, Ohta R, Fujioka H, Sajiki H, Sawama Y. J. Org. Chem. 2019; 84: 3853
  • 36 Blümel M, Nagasawa S, Blackford K, Hare SR, Tantillo DJ, Sarpong R. J. Am. Chem. Soc. 2018; 140: 9291
  • 37 Bonazzi S, Cheng B, Wzorek JS, Evans DA. J. Am. Chem. Soc. 2013; 135: 9338
  • 38 Lan J, Jiang G, Yang J, Zhu H, Le Z, Xie Z. Synthesis 2020; 52: 2121
  • 39 Liu C, Shen Y, Xiao Z, Yang H, Han X, Yuan K, Ding Y. Green Chem. 2019; 21: 4030
  • 40 Yue H, Guo L, Lee SC, Liu X, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 3972
  • 41 Rossolini T, Ferko B, Dixon DJ. Org. Lett. 2019; 21: 6668
  • 42 Baekstroem P, Stridh K, Li L, Norin T. Acta Chem. Scand., Ser. B. 1987; 41: 442
  • 43 Wu Z, Leboeuf D, Retailleau P, Gandon V, Marinetti A, Voituriez A. Chem. Commun. 2017; 53: 7026
  • 44 Konishi A, Okada Y, Nakano M, Sugisaki K, Sato K, Takui T, Yasuda M. J. Am. Chem. Soc. 2017; 139: 15284
  • 45 Tanemura K, Suzuki T. Chem. Lett. 2015; 44: 797