Synthesis 2021; 53(21): 3909-3934
DOI: 10.1055/a-1519-1670
review

Synthesis and Applications of Cyclopropanones and Their Equivalents as Three-Carbon Building Blocks in Organic Synthesis

Yujin Jang
,
,
This work was supported by North Carolina State University startup funds. Y.J. is grateful to NC State University for a Burroughs Wellcome Fellowship in Organic Chemistry. R.M.R. is grateful to NC State University for Diversity Graduate Assistance grants, and for a Percy Lavon Julian Award in Organic Chemistry.


Dedicated to the memory of Prof. Harry H. Wasserman

Abstract

Cyclopropanone derivatives constitute highly strained cycloalkanones with promising applications as three-carbon building blocks in organic synthesis. Due to the presence of a ketone in such a small ring system, all C–C bonds and the carbonyl group are considered to be labile in suitable conditions, leading to a wide variety of synthetic disconnections, including nucleophilic addition, ring expansion, ring-opening, and (formal) cycloaddition. Despite their synthetic potential, the widespread adoption of cyclopropanones as substrates has been considerably hampered by the difficulties associated with the preparation and storage of such unstable compounds, prompting the development of cyclopropanone surrogates that can equilibrate to the parent ketone in situ via elimination. This review summarizes the syntheses and applications of cyclopropanone derivatives and their equivalents, and offers a perspective of the state of the field as well as its expected future directions.

1 Introduction

2 Preparation of Cyclopropanones and Their Equivalents

2.1 Carbenoid Chemistry

2.2 Allene Oxide Rearrangement

2.3 Ring Closure by Dehydrohalogenation or Dehalogenation

2.4 Photolytic Processes

2.5 Miscellaneous Formation of Cyclopropanones

2.6 Cyclopropanone Equivalents

3 Synthetic Applications of Cyclopropanones and Their Equivalents

3.1 Nucleophilic Addition to the Carbonyl Group

3.2 Ring Expansion

3.3 Ring-Opening

3.4 Cycloaddition and Formal Cycloaddition

4 Conclusion and Outlook



Publication History

Received: 08 May 2021

Accepted after revision: 27 May 2021

Publication Date:
27 May 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Turro NJ. Acc. Chem. Res. 1969; 2: 25
    • 3a Salaün J. Chem. Rev. 1983; 83: 619
    • 3b Salaün J. Cyclopropanones and Their Precursors . In Science of Synthesis, Vol. 26. Cossy J. Georg Thieme Verlag; Stuttgart: 2005: 607

      For reviews on cyclopropenone chemistry, see:
    • 5a Potts KT, Baum JS. Chem. Rev. 1974; 74: 189
    • 5b Eicher T, Weber JL. Top. Curr. Chem. 1975; 57: 1
    • 5c Nakamura M, Isobe H, Nakamura E. Chem. Rev. 2003; 103: 1295
    • 5d Komatsu K, Kitagawa T. Chem. Rev. 2003; 103: 1371
    • 6a Favorskii A. J. Russ. Phys. Chem. Soc. 1894; 26: 559
    • 6b Cookson RC, Nye MJ. Proc. Chem. Soc., London 1963; 125
    • 6c Cookson RC, Nye MJ, Subrahmanyam G. Proc. Chem. Soc., London 1964; 144
    • 6d Kende AS. Org. React. 1960; 11: 261
    • 6e Baretta A, Waegell B. React. Intermed. (Plenum) 1982; 2: 527

    • For recent reviews on the Favorskii rearrangement, see:
    • 6f Butkus E. In Comprehensive Organic Synthesis II, 2nd ed., Vol. 3. Knochel P. Elsevier; Amsterdam: 2014: 853-886
    • 6g Guijarro D, Yus M. Curr. Org. Chem. 2005; 9: 1713
    • 7a Staudinger H, Reber Th. Helv. Chim. Acta 1921; 4: 3
    • 7b Lipp P, Köster R. Ber. Dtsch. Chem. Ges. B 1931; 64: 2823
    • 7c Lipp P, Buchkremer J, Seeles H. Justus Liebigs Ann. Chem. 1932; 499: 1
    • 7d Kaarsemaker Sj, Coops J. Rec. Trav. Chim. Pays-Bas 1951; 70: 1033
    • 7e Semenow DA, Cox EF, Roberts JD. J. Am. Chem. Soc. 1956; 78: 3221
    • 8a Turro NJ, Byers GW, Leermakers PA. J. Am. Chem. Soc. 1964; 86: 955
    • 8b Turro NJ, Cole TJr. Tetrahedron Lett. 1969; 10: 3451
    • 9a Turro NJ, Hammond WB. J. Am. Chem. Soc. 1966; 88: 3672
    • 9b Schaafsma SE, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1966; 85: 1170
    • 9c Turro NJ, Hammond W, Leermakers PA. J. Am. Chem. Soc. 1965; 87: 2774
    • 9d Hammond WB, Turro NJ. J. Am. Chem. Soc. 1966; 88: 2880
    • 9e Pazos JF, Greene FD. J. Am. Chem. Soc. 1967; 89: 1030
    • 9f Turro NJ, Hammond WB. Tetrahedron 1968; 24: 6017
  • 10 van Tilborg WJ. M, Steinberg H, de Boer ThJ. Synth. Commun. 1973; 3: 189
    • 11a Quirk RP, Dunawy JH. Polycyclopropanone Synthesis and Hydrogenolysis . In Chemical Reaction on Polymers, ACS Symposium Series 364. Benham JL, Kinstle JF. American Chemical Society; Washington DC: 1988: 141
    • 11b Schaafsma SE, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1967; 86: 651
    • 11c Turro NJ, Hammond WB. J. Am. Chem. Soc. 1967; 89: 1028
  • 12 Rothgery EF, Holt RJ, McGee HA. Jr. J. Am. Chem. Soc. 1975; 97: 4971
  • 13 Sorensen TS, Sun F. J. Am. Chem. Soc. 1997; 119: 11327
    • 14a Zaitseva GS, Bogdanova GS, Baukov YuI, Lutsenko IF. J. Organomet. Chem. 1976; 121: C21
    • 14b Zaitseva GS, Bogdanova GS, Baukov YuI, Lutsenko IF. Zh. Obshch. Khim. 1978; 48: 131
    • 14c Zaitseva GS, Kisin AV, Fedorenko EN, Nosova VM, Livantsova LI, Baukov YuI. Zh. Obshch. Khim. 1987; 57: 2049
    • 14d Zaitseva GS, Novikova OP, Livantsova LI, Baukov YuI. Zh. Obshch. Khim. 1988; 58: 1676
    • 14e Zaitseva GS, Kisin AV, Novikova OP, Livantsova LI, Baukov YuI. Zh. Obshch. Khim. 1988; 58: 1677
    • 14f Zaitseva GS, Krylova GS, Perelygina OP, Baukov YuI, Lutsenko IF. Zh. Obshch. Khim. 1981; 51: 2252
    • 14g Fedorenko EN, Zaitseva GS, Baukov YuI, Lutsenko IF. Zh. Obshch. Khim. 1986; 56: 2431
    • 14h Zaitseva GS, Kisin AV, Baukov YuI, Lorbeth J, Lutsenko IF. J. Organomet. Chem. 1988; 345: 253
    • 15a Léost F, Doutheau A. Tetrahedron Lett. 1999; 40: 847
    • 15b Dalton AM, Zhang Y, Davie CP, Danheiser RL. Org. Lett. 2002; 4: 2465
    • 15c Frey J, Rappoport Z. J. Am. Chem. Soc. 1996; 118: 5182
    • 15d Yates P, Abrams GD, Betts MJ, Goldstein S. Can. J. Chem. 1971; 49: 2850
  • 16 Ashnagar A, Bailey PD, Cochrane PJ, Mills TJ, Price RA. ARKIVOC 2007; (xi): 161
    • 17a Crandall JK, Machleder WH. Tetrahedron Lett. 1966; 7: 6037
    • 17b Crandall JK, Machleder WH. J. Am. Chem. Soc. 1968; 90: 7292

    • For reviews and discussions on oxyallyl species, see:
    • 17c Hoffmann R. J. Am. Chem. Soc. 1968; 90: 1475
    • 17d Liberles A, Greenberg A, Lesk A. J. Am. Chem. Soc. 1972; 94: 8685
    • 17e Noyori R, Hayakawa Y. Org. React. 1983; 29: 163
    • 17f Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1984; 23: 1
    • 17g Mann J. Tetrahedron 1986; 42: 4611
    • 17h Hosomi A, Tominaga Y. Comprehensive Organic Synthesis, Vol. 5. Trost BM, Fleming I. Pergamon; Oxford: 1991. Chap. 5.1
    • 17i Rigby JH, Pigge FC. Org. React. 1997; 51: 351
    • 17j Regnier V, Martin D. Org. Chem. Front. 2015; 2: 1536

      For discussions of the allene oxide–cyclopropanone equilibrium in biosynthetic pathways, see:
    • 18a Gardner HW, Simpson TD, Hamber M. Lipids 1993; 28: 487
    • 18b Grechkin AN, Lantsova NV, Toporkova YY, Gorina SS, Mukhitova FK, Khairutdinov BI. ChemBioChem 2011; 12: 2511
    • 18c Grechkin AN, Ogorodnikova AV, Egorova AM, Mukhitova FK, Ilyina TM, Khairutdinov BI. ChemistryOpen 2018; 7: 336
    • 19a Crandall JK, Machleder WH, Thomas MJ. J. Am. Chem. Soc. 1968; 90: 7346
    • 19b Crandall JK, Machleder WH. J. Am. Chem. Soc. 1968; 90: 7347
    • 19c Sclove DB, Pazos JF, Camp RL, Greene FD. J. Am. Chem. Soc. 1970; 92: 7488
    • 19d Liebman JF, Greenberg A. J. Org. Chem. 1974; 39: 123
    • 19e Cordes MH. J, Berson JA. J. Am. Chem. Soc. 1996; 118: 6241
    • 20a Chan TH, Li MP, Mychajlowskij W, Harpp DN. Tetrahedron Lett. 1974; 15: 3511
    • 20b Chan TH, Ong BS. J. Org. Chem. 1978; 43: 2994
    • 20c Chan TH, Ong BS. Tetrahedron 1980; 36: 2269
    • 20d Shipman M, Thorpe HR, Clemens IR. Tetrahedron 1998; 54: 14265
  • 21 Camp RL, Greene FD. J. Am. Chem. Soc. 1968; 90: 7349
  • 22 Crandall JK, Machleder WH. J. Heterocycl. Chem. 1969; 6: 777
  • 23 Clay MD, Durber J, Schepp NP. Org. Lett. 2001; 3: 3883
    • 24a Cookson RC, Nye MJ. J. Chem. Soc. 1965; 2009
    • 24b Rosnati V, Pagani G, Sannicoló F. Tetrahedron Lett. 1967; 8: 4545
    • 24c Doerr RG, Skell PS. J. Am. Chem. Soc. 1967; 89: 4684
    • 24d Cookson RC, Nye MJ, Subrahmanyam G. J. Chem. Soc. C. 1967; 474
    • 24e Chenier PJ, Kao JC. J. Org. Chem. 1976; 41: 3730
    • 24f Herter R, Föhlisch B. Chem. Ber. 1982; 115: 381
    • 24g Engel ChR, Mérand Y, Côté J. J. Org. Chem. 1982; 47: 4485
    • 24h De Kimpe N, Palamareva M, Schamp N. J. Org. Chem. 1985; 50: 2993
    • 24i Karimi S, Grohmann KG. J. Org. Chem. 1995; 60: 554
    • 24j Fohlishc B, Gehriach E, Henle G, Boberlin U, Gekeler M, Geywitz B, Ruck M, Vogl H. J. Chem. Res. 1991; 134
    • 24k Gerard G. Bull. Soc. Chim. Fr. 1973; 382
    • 25a Jun JG. B, Dewar MJ. S. J. Chem. Soc. 1954; 1201
    • 25b Stork G, Borowitz IJ. J. Am. Chem. Soc. 1960; 82: 4307
    • 25c House HO, Gilmore WF. J. Am. Chem. Soc. 1961; 83: 3980
    • 25d Fort AW. J. Am. Chem. Soc. 1962; 84: 2620
    • 25e Conia JM, Ripoll JL. Bull. Soc. Chim. Fr. 1963; 773
    • 25f Conia JM, Salaün J. Tetrahedron Lett. 1963; 4: 1175
    • 25g Charpentier-Morize M, Mayer M, Tchoubar B. Bull. Soc. Chim. Fr. 1965; 529
    • 25h Rappe C. Ark. Kemi 1965; 24: 105
    • 25i Rappe C. Ark. Kemi 1965; 24: 315
    • 25j Rappe C. Acta Chem. Scand. 1966; 20: 862
    • 25k Deghenghi R, Schilling G, Papineau Couture G. Can. J. Chem. 1966; 44: 789
    • 25l Warnhoff EW, Wong CM, Tai T. J. Am. Chem. Soc. 1968; 90: 514
    • 25m Garbisch EW. Jr, Wohllebe J. Chem. Commun. 1968; 306
    • 25n Rappe C, Knutsson L, Turro NJ, Gagosian RB. J. Am. Chem. Soc. 1970; 92: 2032
    • 25o Akhrem AA, Ustynyuk TK, Titov YA. Russ. Chem. Rev. 1970; 39: 732
    • 25p Rappe C, Knutsson L. Angew. Chem., Int. Ed. Engl. 1972; 11: 329
    • 25q Wharton PS, Fritzberg AR. J. Org. Chem. 1972; 37: 1899
    • 25r Bordwell FG, Strong JG. J. Org. Chem. 1973; 38: 579
    • 25s Verhé R, De Buyck L, De Kimpe N, Kudesia VP, Schamp N. J. Org. Chem. 1977; 42: 1256
    • 25t Hamblin GD, Jimenez RP, Sorensen TS. J. Org. Chem. 2007; 72: 8033
    • 26a Schaad LD, Hess BA, Zahradnik R. J. Org. Chem. 1981; 46: 1909
    • 26b Dua S, Pollnitz AP, Bowie JH. J. Chem. Soc., Perkin Trans. 2 1993; 2235
    • 26c Boyer LE, Brazzillo J, Forman MA, Zanoni B. J. Org. Chem. 1996; 61: 7611
    • 26d Moliner V, Castillo R, Safont VS, Oliva M, Bohn S, Tuñón I, Andrés J. J. Am. Chem. Soc. 1997; 119: 1941
    • 26e Castillo R, Moliner V, Safont VS, Oliva M, Andrés J. J. Mol. Struct.: THEOCHEM 1998; 426: 299
    • 26f Yurdaku A, Gurtner C, Jung E.-S, Lorenzi Riatsch A, Linden A, Guggiseg A, Bienz S, Hesse M. Helv. Chim. Acta 1998; 81: 1373
    • 26g Castillo R, Andrés J, Moliner V. J. Phys. Chem. B 2001; 105: 2453
    • 26h Tsuchida N, Yamazaki S, Yamabe S. Org. Biomol. Chem. 2008; 6: 3109
    • 27a Büchi G, Hochstrasser U, Pawlak W. J. Org. Chem. 1973; 38: 4348
    • 27b Valent I, Pribus M, Novák F, Plánková S, Blaško J, Kubinec R, Almássy A, Filo J, Sigmundová I, Sebechlebská T, Lawson TB, Noszticzius Z. J. Phys. Chem. A. 2019; 123: 9669
    • 28a Viviano Posadas AO, Flores Álamo M, Iglesias Arteaga MA. Steroids 2016; 113: 22
    • 28b Xu H, Wang F, Xue W, Zheng Y, Wang Q, Qiu FG, Jin Y. Org. Process Res. Dev. 2018; 22: 377
    • 28c Kutsumura N, Koyama Y, Suzuki Y, Tominaga K.-I, Yamamoto N, Saitoh T, Nagumo Y, Nagase H. Org. Lett. 2018; 20: 1559
    • 28d Takeshita H, Kawakami H, Ikeda Y, Mori A. J. Org. Chem. 1994; 59: 6490
    • 28e Lee E, Yoon CH. J. Chem. Soc., Chem. Commun. 1994; 479
    • 29a Loftfield RB. J. Am. Chem. Soc. 1950; 72: 632
    • 29b Loftfield RB. J. Am. Chem. Soc. 1951; 73: 4707
    • 30a Fort AW. J. Am. Chem. Soc. 1962; 84: 4979
    • 30b Cookson RC, Nye NJ. Proc. Chem. Soc., London 1963; 129
    • 31a Smissma EE, Hite G. J. Am. Chem. Soc. 1960; 82: 3375
    • 31b Smissma EE, Diebold JL. J. Org. Chem. 1965; 30: 4005
  • 32 Pazos JF, Pacifici JG, Pierson GO, Sclove DB, Greene FD. J. Org. Chem. 1974; 39: 1990
    • 33a Fry AL, Scoggins R. Tetrahedron Lett. 1972; 13: 4079

    • For related electrochemical cyclopropanone formation and Favorskii rearrangements, see:
    • 33b van Tilborg WJ. M, Plomp R, de Ruiter R, Smit CJ. Recl. Trav. Chim. Pays-Bas 1980; 99: 206
    • 33c Inesi A, Rossi L, Feroci M, Rizzuto M. New J. Chem. 1998; 22: 57
    • 33d Feroci M, Inesi A, Orsini M, Rossi L, Sotgiu G. J. Electroanal. Chem. 2001; 507: 89
    • 34a Craig CJ, Dinner A, Mulligan PJ. J. Org. Chem. 1972; 37: 3539
    • 34b House HO, Gilmore WF. J. Am. Chem. Soc. 1961; 83: 3972
    • 34c Reusch W, Mattison P. Tetrahedron 1967; 23: 1953
    • 34d Kametani T, Suzuki Y, Ban C, Honda T. Heterocycles 1987; 26: 1491

      For related photolytic rearrangements of cyclobutane-1,2-diones to cyclopropanones via decarbonylation, see:
    • 35a de Groot A, Oudman D, Wynberg H. Tetrahedron Lett. 1969; 10: 1529
    • 35b Chapman OL, Mattes K, McIntosh CL, Pacansky J, Calder GV, Orr G. J. Am. Chem. Soc. 1973; 95: 6134
    • 36a Hayes DM, Zeiss CA, Hoffmann R. J. Phys. Chem. 1971; 75: 340
    • 36b Birney DM, Ham S, Unruh GR. J. Am. Chem. Soc. 1997; 119: 4509
    • 36c Balcioglu N, Sevin F. J. Mol. Model. 2000; 6: 48
    • 36d Sato T, Niino H, Yabe A. J. Phys. Chem. A. 2001; 105: 7790
    • 36e Haller I, Srinivasan R. Can. J. Chem. 1965; 43: 3165
  • 37 Richey HG, Richey JM, Clagett DC. J. Am. Chem. Soc. 1964; 86: 3906
  • 38 Turro NJ, Leermakers PA, Wilson HR, Neckers DC, Byers GW, Vesley GF. J. Am. Chem. Soc. 1965; 87: 2613
  • 39 Zang H, Neckers DC. J. Org. Chem. 1999; 64: 2103
    • 40a Adam W, Fuss A, Mazenod FP, Quast H. J. Am. Chem. Soc. 1981; 103: 998
    • 40b Breda S, Reva I, Fausto R. J. Phys. Chem. A 2012; 116: 2131
  • 41 Barber LL, Chapman OL, Lassila JD. J. Am. Chem. Soc. 1969; 91: 3664
  • 42 Weinshenker NM, Greene FD. J. Am. Chem. Soc. 1968; 90: 506
    • 43a West R, Zecher DC. J. Am. Chem. Soc. 1967; 89: 152
    • 43b Zecher DC, West R. J. Am. Chem. Soc. 1967; 89: 153
    • 43c West R, Zecher DC, Koster SK, Eggerding D. J. Org. Chem. 1975; 40: 2295
    • 43d Starnes WH, Plank DA, Floyd JC. J. Org. Chem. 1975; 40: 1124
    • 44a Breslow R, Oda M. J. Am. Chem. Soc. 1972; 94: 4787
    • 44b Oda M, Breslow R, Pecoraro J. Tetrahedron Lett. 1972; 13: 4419
    • 44c Jacobs CA, Dailey WP. J. Org. Chem. 1995; 60: 7747
    • 45a Liu J, An Y, Jiang H.-Y, Chen Z. Tetrahedron Lett. 2008; 49: 490

    • For an analogous reaction with aldehydes instead of cyclopropanone, see:
    • 45b Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
  • 46 Poteat CM, Jang Y, Jung M, Johnson JD, Williams RG, Lindsay VN. G. Angew. Chem. Int. Ed. 2020; 59: 18655
  • 47 Rühlmann K. Synthesis 1971; 236
    • 48a Salaün J. J. Org. Chem. 1976; 41: 1237
    • 48b Salaün J, Marguerite J. Org. Synth. 1985; 63: 147
    • 48c Crossland I. Acta Chem. Scand., Ser. B 1975; 29: 468
    • 48d Diethelm S, Carreira EM. J. Am. Chem. Soc. 2015; 137: 6084
    • 49a Nakamura E, Sekiya K, Kuwajima I. Tetrahedron Lett. 1987; 28: 337
    • 49b Fadel A, Canet J.-L, Salaün J. Synlett 1990; 89
    • 49c Fadel A, Khesrani A. Tetrahedron: Asymmetry 1998; 9: 305
    • 49d Fadel A, Tesson N. Eur. J. Org. Chem. 2000; 2153
    • 50a Rousseau G, Slougui N. Tetrahedron Lett. 1983; 24: 1251
    • 50b Nakamura E, Oshino H, Kuwajima I. J. Am. Chem. Soc. 1986; 108: 3745
    • 51a Lee J, Kim YG, Bae JG, Cha JK. J. Org. Chem. 1996; 61: 4878

    • For reviews on the Kulinkovich cyclopropanation, see:
    • 51b Kulinkovich OG, de Meijere A. Chem. Rev. 2000; 100: 2789
    • 51c Kulinkovich OG. Russ. Chem. Bull. 2004; 53: 1065
    • 51d Kulinkovich O, Isakov V, Kananovich D. Chem. Rec. 2008; 8: 269
    • 51e Cha JK, Kulinkovich OG. Org. React. 2012; 77: 1
    • 51f Konik YA, Kananovich DG. Tetrahedron Lett. 2020; 61: 152036
    • 52a McElvain SM, Weyna PL. J. Am. Chem. Soc. 1959; 81: 2579
    • 52b Dowd P, Kaufman C, Paik YH. Tetrahedron Lett. 1985; 26: 2283
    • 52c Felpin F.-X, Doris E, Wagner A, Valleix A, Rousseau B, Mioskowski C. J. Org. Chem. 2001; 66: 305
  • 53 Wang SL. B, Goldberg DR, Liu X, Su J, Zheng Q.-H, Liptak V, Wulff WD. J. Organomet. Chem. 2005; 690: 6101
    • 54a Nakamura M, Inoue T, Nakamura E. J. Organomet. Chem. 2001; 624: 300

    • For related examples, see:
    • 54b Nakamura E, Isaka M, Matsuzawa S. J. Am. Chem. Soc. 1988; 110: 1297
    • 54c Isaka M, Nakamura E. J. Am. Chem. Soc. 1990; 112: 7428
    • 54d Kubota K, Isaka M, Nakamura M, Nakamura E. J. Am. Chem. Soc. 1993; 115: 5867
    • 54e Nakamura M, Arai M, Nakamura E. J. Am. Chem. Soc. 1995; 117: 1179
    • 54f Nakamura E, Kubota K. J. Org. Chem. 1997; 62: 792
    • 54g Kubota K, Mori S, Nakamura M, Nakamura E. J. Am. Chem. Soc. 1998; 120: 13334
    • 54h Nakamura M, Hirai A, Nakamura E. J. Am. Chem. Soc. 2000; 122: 978
    • 54i Nakamura M, Inoue T, Sato A, Nakamura E. Org. Lett. 2000; 2: 2193
    • 55a van Tilborg WJ. M, Schaafsma SE, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1967; 86: 419
    • 55b Turro NJ, Hammond WB. Tetrahedron 1968; 24: 6029
    • 56a Wasserman HH, Clagett DC. Tetrahedron Lett. 1964; 5: 341
    • 56b Wasserman HH, Clagett DC. J. Am. Chem. Soc. 1966; 88: 5368
    • 57a Wasserman HH, Cochoy RE, Baird MS. J. Am. Chem. Soc. 1969; 91: 2375
    • 57b Stolle A, Ollivier J, Piras PP, Salaün J, de Meijere A. J. Am. Chem. Soc. 1992; 114: 4051
    • 57c Wasserman HH, Hearn MJ, Cochoy RE. J. Org. Chem. 1980; 45: 2874
    • 57d Brown HC, Rao CG. J. Org. Chem. 1978; 43: 3602
  • 58 Salaün J, Bennani F, Compain J.-C, Fadel A, Ollivier J. J. Org. Chem. 1980; 45: 4129
    • 59a Machín Rivera R, Jang Y, Poteat CM, Lindsay VN. G. Org. Lett. 2020; 22: 6510

    • For a related transformation specific to the addition of alkynyllithium nucleophiles, see:
    • 59b An Y, Liu J, Jiang H.-Y, Wang Y, Chen Z. Tetrahedron Lett. 2008; 49: 3124
  • 60 Hatano M, Ito O, Suzuki S, Ishihara K. J. Org. Chem. 2010; 75: 5008
  • 61 Liu J, An Y, Wang Y, Jiang H, Zhang Y, Chen Z. Chem. Eur. J. 2008; 14: 9131
    • 62a Salaün J. Tetrahedron Lett. 1979; 20: 4375
    • 62b Spitzner D, Swoboda H. Tetrahedron Lett. 1986; 27: 1281

    • For related examples of the Wittig olefination of cyclopropanone equivalents, see:
    • 62c Thiemann T, Ohira D, Li Y, Sawada T, Mataka S, Rauch K, Noltemeyer M, de Meijere A. J. Chem. Soc., Perkin Trans. 1 2000; 2968
    • 62d Osborne NF. J. Chem. Soc., Perkin Trans. 1 1982; 1435
    • 62e de Meijere A, Teichmann S, Seyed-Mahdavi F, Kohlstruk S. Liebigs Ann. Chem. 1996; 1989
    • 63a van Tilborg WJ. M, Schaafsma SE, Steinberg H. Recl. Trav. Chim. Pays-Bas 1967; 86: 417
    • 63b van Tilborg WJ. M, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1974; 93: 290
    • 63c van Tilborg WJ. M, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1974; 93: 294
    • 63d Jongejan E, van Tilborg WJ. M, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1977; 96: 40
    • 64a Turro NJ, Gagosian RB. J. Chem. Soc. D 1969; 949
    • 64b Turro NJ, Gagosian RB. J. Am. Chem. Soc. 1970; 92: 2036
    • 65a Wasserman HH, Baird MS. Tetrahedron Lett. 1971; 12: 3721
    • 65b Wasserman HH, Adickes HW, de Ochoa OE. J. Am. Chem. Soc. 1971; 93: 5586
    • 65c Wasserman HH, Glazer EA, Hearn MJ. Tetrahedron Lett. 1973; 14: 4855
    • 65d Wasserman HH, Hlasta DJ. J. Am. Chem. Soc. 1978; 100: 6780
    • 65e Wasserman HH, Glazer E. J. Org. Chem. 1975; 40: 1505
    • 65f De Kimpe N, Tehrani KA, Fonck G. J. Org. Chem. 1996; 61: 6500
    • 65g Grecian S, Desai P, Mossman C, Poutsma JL, Aubé J. J. Org. Chem. 2007; 72: 9439
    • 66a Carey JT, Knors C, Helquist P. J. Am. Chem. Soc. 1986; 108: 8313
    • 66b Fehr C, Galindo J, Etter O, Thommen W. Angew. Chem. Int. Ed. 2002; 41: 4523
    • 67a Carey JT, Helquist P. Tetrahedron Lett. 1988; 29: 1243
    • 67b Reydellet V, Helquist P. Tetrahedron Lett. 1989; 30: 6837
    • 67c Bradlee MJ, Helquist P. Org. Synth. 1997; 74: 137
    • 67d Narasimhan NS, Patil PA. Tetrahedron Lett. 1986; 27: 5133
    • 67e Narasimhan NS, Sunder NM. Tetrahedron Lett. 1988; 29: 2985
    • 67f Sunder NM, Patil PA, Narasimhan NS. J. Chem. Soc., Perkin Trans. 1 1990; 1331
  • 68 Takanami T, Ogawa A, Suda K. Tetrahedron Lett. 2000; 41: 3399
  • 69 Depuy CH, Breitbeil FW, Debruin KR. J. Am. Chem. Soc. 1966; 88: 3347
  • 70 Bakker BH, van Ramesdonk HJ, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1975; 94: 64
  • 71 Desai P, Aubé J. Org. Lett. 2000; 2: 1657
    • 72a Regitz M, Maas G. Diazo Compounds: Properties and Synthesis . Academic; Orlando: 1986: 596
    • 72b Baumann H, Duthaler RO. Helv. Chim. Acta 1988; 71: 1035
    • 72c Podlech J, Seebach D. Helv. Chim. Acta 1995; 78: 1238
    • 72d Axenrod T, Watnick C, Yazdekhasti H, Dave PR. J. Org. Chem. 1995; 60: 1959
    • 73a Erden I, Amputch MA. Tetrahedron Lett. 1987; 28: 3779
    • 73b Erden I, Drummond J, Alstad R, Xu F. Tetrahedron Lett. 1993; 34: 1255
    • 73c Erden I, Drummond J, Alstad R, Xu F. Tetrahedron Lett. 1993; 34: 2291

      For recent reviews on the metal homoenolate chemistry and other ring-opening reactions of cyclopropanols and cyclopropanone (hemi)ketals, see:
    • 74a McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3
    • 74b Mills LR, Rousseaux SA. L. Eur. J. Org. Chem. 2019; 8
    • 74c Nikolaev A, Orellana A. Synthesis 2016; 48: 1741
    • 74d Rosa D, Nikolaev A, Nithiy N, Orellana A. Synlett 2015; 26: 441
    • 74e Kimura M. In Comprehensive Organic Synthesis II, 2nd ed., Vol. 2. Knochel P. Elsevier; Amsterdam: 2014: 606
    • 74f Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 75a Schaafsma SE, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1966; 85: 70
    • 75b Schaafsma SE, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1966; 85: 73
    • 75c Schaafsma SE, Molenaar EJ. F, Steinberg H, de Boer ThJ. Recl. Trav. Chim. Pays-Bas 1967; 86: 1301
    • 75d Schaafsma SE, Jorritsma R, Steinberg H, de Boer ThJ. Tetrahedron Lett. 1973; 14: 827
    • 76a Bakker BH, Schilder GJ. A, Bok TR, Steinberg H, de Boer ThJ. Tetrahedron 1973; 29: 93
    • 76b de Boer ThJ. Angew. Chem. Int. Ed. Engl. 1972; 11: 321

    • For a related study on the use of organic oxidants in the radical ring-opening of cyclopropanone ketals, see:
    • 76c Abe M, Oku A. Tetrahedron Lett. 1994; 35: 3551
    • 77a Abe M, Oku A. J. Chem. Soc., Chem. Commun. 1994; 1673
    • 77b Abe M, Nojima M, Oku A. Tetrahedron Lett. 1996; 37: 1833

    • For another example of β-radical trapping with alkenes following oxidative ring-opening, see:
    • 77c Iwasawa N, Hayakawa S, Funahashi M, Isobe K, Narasaka K. Bull. Chem. Soc. Jpn. 1993; 66: 819
  • 78 Wu L, Wang L, Chen P, Guo Y, Liu G. Adv. Synth. Catal. 2020; 362: 2189
    • 79a Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1977; 99: 7360
    • 79b Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1983; 105: 651
    • 79c Oshino H, Nakamura E, Kuwajima I. J. Org. Chem. 1985; 50: 2802
    • 79d Nakamura E, Shimada J, Kuwajima I. Organometallics 1985; 4: 641
    • 79e Nakamura E, Kuwajima I. Tetrahedron Lett. 1986; 27: 83
    • 79f Nakamura E, Aoki S, Sekiya K, Oshino H, Kuwajima I. J. Am. Chem. Soc. 1987; 109: 8056
    • 79g Tamaru Y, Nakamura T, Sakaguchi M, Ochiai H, Yoshida Z. J. Chem. Soc., Chem. Commun. 1988; 610
    • 79h Ochiai H, Nishihara T, Tamaru Y, Yoshida Z. J. Org. Chem. 1988; 53: 1343
    • 79i Tamaru Y, Tanigawa H, Yamamoto T, Yoshida Z.-i. Angew. Chem. Int. Ed. Engl. 1989; 28: 351
    • 79j Kuwajima I, Nakamura E. Top. Curr. Chem. 1990; 155: 1
    • 79k Fujimura T, Aoki S, Nakamura E. J. Org. Chem. 1991; 56: 2809
    • 79l Aoki S, Nakamura E. Tetrahedron 1991; 47: 3935

    • For related seminal studies performed on cyclopropanols, see:
    • 79m Nickon A, Lambert JL, Oliver JE, Covey DF, Morgan J. J. Am. Chem. Soc. 1976; 98: 2593
    • 80a Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1984; 106: 3368
    • 80b Nakamura E, Kuwajima I. Org. Synth. 1987; 66: 43
  • 81 Aoki S, Fujimura T, Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1988; 110: 3296
    • 82a Turro NJ, Edelson SS, Williams JR, Thomas RD. J. Am. Chem. Soc. 1968; 90: 1926
    • 82b Turro NJ, Edelson SS. J. Am. Chem. Soc. 1968; 90: 4499
    • 82c Turro NJ, Edelson SS, Williams JR, Darling TR, Hammond WB. J. Am. Chem. Soc. 1969; 91: 2283
    • 82d Turro NJ, Edelson SS, Gagosian RB. J. Org. Chem. 1970; 35: 2058
    • 83a Noordstrand AA. P, Steinberg H, de Boer ThJ. Tetrahedron Lett. 1975; 16: 2611
    • 83b Wiering PG, Steinberg H. J. Org. Chem. 1981; 46: 1663
    • 84a Wiering PG, Verhoeven JW, Steinberg H. J. Am. Chem. Soc. 1981; 103: 7675
    • 84b Oku A, Abe M, Iwamoto M. J. Org. Chem. 1994; 59: 7445
    • 85a Crimmins MT, Nantermet PG. J. Org. Chem. 1990; 55: 4235
    • 85b Crimmins MT, Nantermet PG, Trotter BW, Vallin IM, Watson PS, McKerlie LA, Reinhold TL, Cheung AW. H, Stetson KA, Dedopoulou D, Gray J. J. Org. Chem. 1993; 58: 1038
    • 86a Skorianetz W, Schulte-Elte KH, Ohloff G. Helv. Chim. Acta 1971; 54: 1913
    • 86b Skorianetz W, Schulte-Elte KH, Ohloff G. Angew. Chem., Int. Ed. Engl. 1972; 11: 330
    • 86c Harada N, Uda H, Ueno H. Chem. Lett. 1972; 1: 663
    • 86d Harada N, Suzuki S, Uda H, Ueno H. Chem. Lett. 1972; 1: 803
    • 86e Harada N, Suzuki S, Uda H, Ueno H. J. Am. Chem. Soc. 1972; 94: 1777
    • 86f Harada N, Uda H, Ueno H, Utsumi S. Chem. Lett. 1973; 2: 1173
  • 87 Erden I, Xu F.-P, Drummond J, Alstad R. J. Org. Chem. 1993; 58: 3611
  • 88 Jang Y, Lindsay VN. G. Org. Lett. 2020; 22: 8872
    • 89a Khand IU, Knox GR, Pauson PL, Watts WE, Foreman MI. J. Chem. Soc., Perkin Trans. 1 1973; 975

    • For reviews on the Pauson–Khand reaction, see:
    • 89b Brummond KM, Kent JL. Tetrahedron 2000; 56: 3263
    • 89c Blanco-Urgoiti J, Anorbe L, Perez-Serrano L, Dominguez G, Perez-Castells J. Chem. Soc. Rev. 2004; 33: 32
    • 89d Kurteva VB, Afonso CA. M. Chem. Rev. 2009; 109: 6809

      For an analogous mechanism employing cyclobutanones instead of cyclopropanone, see:
    • 90a Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
    • 90b Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2006; 128: 2166
    • 90c Murakami M, Itahashi T, Ito Y. J. Am. Chem. Soc. 2002; 124: 13976
    • 90d Murakami M, Ashida S. Chem. Commun. 2006; 4599
    • 90e Liu L, Ishida N, Murakami M. Angew. Chem. Int. Ed. 2012; 51: 2485
    • 90f Ho KY. T, Aïssa C. Chem. Eur. J. 2012; 18: 3486
    • 91a Kascheres A, Correa Filho J, Cunha S. Tetrahedron 1993; 49: 381

    • For related transformations of cyclopropenones, see:
    • 91b Kascheres A, Kascheres C, Rodrigues JA. R, Santana AR. A. J. Org. Chem. 1976; 41: 3546
    • 91c Eicher T, Angerer EV, Hansen A.-M. Liebigs Ann. Chem. 1971; 746: 102
    • 92a Cho SY, Lee HI, Cha JK. Org. Lett. 2001; 3: 2891

    • For other selected examples of (4+3) cycloadditions involving oxyallyl intermediates, see:
    • 92b Noyori R, Baba Y, Makino S, Takaya H. Tetrahedron Lett. 1973; 14: 1741
    • 92c Takaya H, Makino S, Hayakawa Y, Noyori R. J. Am. Chem. Soc. 1978; 100: 1765
    • 92d Vinter JG, Hoffmann HM. R. J. Am. Chem. Soc. 1973; 95: 3051
    • 92e Schmid R, Schmid H. Helv. Chim. Acta 1974; 57: 1883
    • 92f Föhlisch B, Gehrlach E, Herter R. Angew. Chem., Int. Ed. Engl. 1982; 21: 137
    • 92g Föhlisch B, Joachimi R. Chem. Ber. 1987; 120: 1951
    • 92h Jin S.-j, Choi J.-R, Oh J, Lee D, Cha JK. J. Am. Chem. Soc. 1995; 117: 10914
    • 92i Kim H, Ziani-Cherif C, Oh J, Cha JK. J. Org. Chem. 1995; 60: 792
    • 92j Lee K, Cha JK. Org. Lett. 1999; 1: 523
    • 92k Cho SY, Lee JC, Cha JK. J. Org. Chem. 1999; 64: 3394