Synthesis 2022; 54(04): 1055-1080
DOI: 10.1055/a-1517-7515
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Asymmetric Synthesis of Fused Tetrahydroquinolines via Intra­molecular Aza-Diels–Alder Reaction of ortho-Quinone Methide Imines

Fabian Hofmann
,
Cornelius Gärtner
,
Martin Kretzschmar
,
Generous financial support has been provided by the Deutsche Forschungsgemeinschaft (SCHN 441/11-2) and the Deutsche Bundesstiftung Umwelt (DBU) in the form of a predoctoral fellowship awarded to M.K.


Abstract

Aza-Diels–Alder reactions are straightforward processes for the construction of N-heterocycles, featuring inherent atom-economy and stereospecificity. Intramolecular strategies allow the formation of bicyclic core structures with up to three stereocenters within a single step. Herein, this concept is combined with the chemistry of chiral Brønsted acid bound ortho-quinone methide imines to generate a range of interesting fused tetrahydroquinolines in a diastereo- and enantioselective­ manner.

Supporting Information



Publication History

Received: 23 April 2021

Accepted after revision: 26 May 2021

Accepted Manuscript online:
26 May 2021

Article published online:
01 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 2a Katritzky AR, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 2b Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 2c Muthukrishnan I, Sridharan V, Menéndez JC. Chem. Rev. 2019; 119: 5057
  • 3 Jacquemond-Collet I, Benoit-Vical F, Valentin A, Stanislas E, Mallié M, Fourasté I. Planta Med. 2002; 68: 68
  • 4 Guarna A, Machetti F, Occhiato EG, Scarpi D, Comerci A, Danza G, Mancina R, Serio M, Hardy K. J. Med. Chem. 2000; 43: 3718
  • 5 Keene D, Price C, Shun-Shin MJ, Francis DP. BMJ 2014; 349: g4379
    • 6a Abass M. Heterocycles 2005; 65: 901
    • 6b Michael JP. Nat. Prod. Rep. 2008; 25: 139
    • 6c Joule JA. In Advances in Heterocyclic Chemistry: Heterocyclic Chemistry in the 21st Century, Vol. 1. Scriven EF. V, Ramsden CA. Elsevier; Amsterdam: 2016: 81
    • 6d Saddique FA, Farhad M, Aslam S, Ahmad M. Synth. Commun. 2021; 51: 13
    • 7a Tietze LF, Kettschau G. Stereoselective Heterocyclic Synthesis I . In Topics in Current Chemistry, Vol. 189. Metz P. Springer; Heidelberg: 1997: 1
    • 7b Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558 ; Angew. Chem. 2000, 112, 3702
    • 7c Pellissier H. Tetrahedron 2009; 65: 2839
    • 7d Girling PR, Kiyoi T, Whiting A. Org. Biomol. Chem. 2011; 9: 3105
    • 7e Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
    • 7f Masson G, Lalli C, Benohoud M, Dagousset G. Chem. Soc. Rev. 2013; 42: 902
    • 7g Blond G, Gulea M, Mamane V. Curr. Org. Chem. 2016; 20: 2161
    • 7h Cao M.-H, Green NJ, Xu S.-Z. Org. Biomol. Chem. 2017; 15: 3105
    • 7i Skrzyńska A, Frankowski S, Albrecht Ł. Asian J. Org. Chem. 2020; 9: 1688

      For selected reviews, see:
    • 8a Kouznetsov VV. Tetrahedron 2009; 65: 2721
    • 8b Fochi M, Caruana L, Bernardi L. Synthesis 2014; 46: 135
    • 8c Forero JS. B, Jones JJr, da Silva FM. Curr. Org. Synth. 2015; 13: 157
  • 9 Gladstone CM, Daniels PH, Wong JL. J. Org. Chem. 1977; 42: 1375
    • 10a Jung ME, Shapiro JJ. J. Am. Chem. Soc. 1980; 102: 7862
    • 10b Cheng Y.-S, Fowler FW, Lupo AT. J. Am. Chem. Soc. 1981; 103: 2090
    • 10c Boger DL, Panek JS. J. Org. Chem. 1981; 46: 2179
    • 10d Serckx-Poncin B, Hesbain-Frisque A.-M, Ghosez L. Tetrahedron Lett. 1982; 23: 3261
    • 10e Masataka I, Kirihara T, Kawaguchi A, Fukumoto K, Kametani T. Tetrahedron Lett. 1984; 25: 4541
    • 11a Boger DL. J. Heterocycl. Chem. 1998; 35: 1003
    • 11b Boger DL, Hong J. J. Am. Chem. Soc. 1998; 120: 1218
    • 11c Boger DL, Hong J, Hikota M, Ishida M. J. Am. Chem. Soc. 1999; 121: 2471
    • 11d Blagg BS. J, Boger DL. Tetrahedron 2002; 58: 6343
    • 11e Hamasaki A, Zimpleman JM, Hwang I, Boger DL. J. Am. Chem. Soc. 2005; 127: 10767
    • 11f Schnermann MJ, Romero FA, Hwang I, Nakamaru-Ogiso E, Yagi T, Boger DL. J. Am. Chem. Soc. 2006; 128: 11799
  • 12 Motorina IA, Grierson DS. Tetrahedron Lett. 1999; 40: 7215
    • 13a He M, Struble JR, Bode JW. J. Am. Chem. Soc. 2006; 128: 8418
    • 13b Jian T.-Y, Sun L.-H, Ye S. Chem. Commun. 2012; 48: 10907
    • 13c Rong Z.-Q, Wang M, Chow CH. E, Zhao Y. Chem. Eur. J. 2016; 22: 9483
    • 14a Esquivias J, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2007; 129: 1480
    • 14b Esquivias J, Alonso I, Arrayás R, Carretero J. Synthesis 2009; 113
    • 14c Chu JC. K, Dalton DM, Rovis T. J. Am. Chem. Soc. 2015; 137: 4445
    • 15a Jiang J, Qing J, Gong L.-Z. Chem. Eur. J. 2009; 15: 7031
    • 15b He L, Laurent G, Retailleau P, Folléas B, Brayer J.-L, Masson G. Angew. Chem. Int. Ed. 2013; 52: 11088 ; Angew. Chem. 2013, 125, 11294
    • 16a Han B, Li J.-L, Ma C, Zhang S.-J, Chen Y.-C. Angew. Chem. Int. Ed. 2008; 47: 9971
    • 16b He Z.-Q, Han B, Li R, Wu L, Chen Y.-C. Org. Biomol. Chem. 2010; 8: 755
    • 16c Li J.-L, Liu T.-Y, Chen Y.-C. Acc. Chem. Res. 2012; 45: 1491
    • 16d An Q, Shen J, Butt N, Liu D, Liu Y, Zhang W. Adv. Synth. Catal. 2015; 357: 3627
  • 17 Shi Z, Yu P, Loh T.-P, Zhong G. Angew. Chem. Int. Ed. 2012; 51: 7825
  • 18 Jiang X, Shi X, Wang S, Sun T, Cao Y, Wang R. Angew. Chem. Int. Ed. 2012; 51: 2084
  • 20 Fries K, Kann K. Justus Liebigs Ann. Chem. 1907; 353: 335
  • 21 Smolinsky G. J. Org. Chem. 1961; 26: 4108
  • 22 Lancaster M, Smith DJ. H. J. Chem. Soc., Chem. Commun. 1980; 471
  • 23 Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928 ; Angew. Chem. 1999, 111, 2054
  • 24 For a selected review, see: Wojciechowski K. Eur. J. Org. Chem. 2001; 3587
  • 25 Xu Z, Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 14937
  • 26 Wu H, Xue F, Xiao X, Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
    • 27a Saunthwal RK, Patel M, Verma AK. J. Org. Chem. 2016; 81: 6563
    • 27b Saunthwal RK, Patel M, Verma AK. Org. Lett. 2016; 18: 2200
    • 28a Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137 ; Angew. Chem. 2012, 124, 9271
    • 28b Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603 ; Angew. Chem. 2014, 126, 9757
    • 29a Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
    • 29b Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110 ; Angew. Chem. 2016, 128, 11276
  • 30 Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
  • 31 Wang C, Tunge JA. J. Am. Chem. Soc. 2008; 130: 8118
    • 32a El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923 ; Angew. Chem. 2014, 126, 8057
    • 32b Saha S, Schneider C. Chem. Eur. J. 2015; 21: 2348
    • 32c Saha S, Schneider C. Org. Lett. 2015; 17: 648
    • 32d Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
    • 32e Alamsetti SK, Spanka M, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392 ; Angew. Chem. 2016, 128, 2438
    • 32f Gebauer K, Reuß F, Spanka M, Schneider C. Org. Lett. 2017; 19: 4588
    • 32g Spanka M, Schneider C. Org. Lett. 2018; 20: 4769
    • 32h Göricke F, Schneider C. Angew. Chem. Int. Ed. 2018; 57: 14736 ; Angew. Chem. 2018, 130, 14952
    • 32i Suneja A, Schneider C. Org. Lett. 2018; 20: 7576
    • 32j Ukis R, Schneider C. J. Org. Chem. 2019; 84: 7175
    • 32k Suneja A, Loui HJ, Schneider C. Angew. Chem. Int. Ed. 2020; 59: 5536 ; Angew. Chem. 2020, 132, 5580
    • 32l Mayer M, Pahl M, Spanka M, Grellmann M, Sickert M, Schneider C, Asmis KR, Belder D. Phys. Chem. Chem. Phys. 2020; 22: 4610
    • 32m Göricke F, Haseloff S, Laue M, Schneider M, Brumme T, Schneider C. J. Org. Chem. 2020; 85: 11699

      For the work of other groups pursuing this concept, see:
    • 33a Wilcke D, Herdtweck E, Bach T. Synlett 2011; 1235
    • 33b Hsiao C.-C, Liao H.-H, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258 ; Angew. Chem. 2014, 126, 13474
    • 33c Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460 ; Angew. Chem. 2015, 127, 5550
    • 33d Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910 ; Angew. Chem. 2015, 127, 1930
    • 33e Wang Z, Ai F, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
    • 33f Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762 ; Angew. Chem. 2015, 127, 5854
    • 33g Lai Z, Wang Z, Sun J. Org. Lett. 2015; 17: 6058
    • 33h Tsui GC, Liu L, List B. Angew. Chem. Int. Ed. 2015; 54: 7703 ; Angew. Chem. 2015, 127, 7814
    • 33i Li G, Liu H, Lv G, Wang Y, Fu Q, Tang Z. Org. Lett. 2015; 17: 4125
    • 33j Xie Y, List B. Angew. Chem. Int. Ed. 2017; 56: 4936 ; Angew. Chem. 2017, 129, 5018
    • 33k Liao H.-H, Hsiao C.-C, Atodiresei I, Rueping M. Chem. Eur. J. 2018; 24: 7718
    • 33l Sun M, Ma C, Zhou S.-J, Lou S.-F, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
  • 34 Kretzschmar M, Hodík T, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 9788 ; Angew. Chem. 2016, 128, 9941
  • 35 Liao H.-H, Chatupheeraphat A, Hsiao C.-C, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 15540 ; Angew. Chem. 2015, 127, 15760
  • 36 Chatupheeraphat A, Liao H.-H, Mader S, Sako M, Sasai H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 4803 ; Angew. Chem. 2016, 128, 4882
  • 37 Hodík T, Schneider C. Org. Biomol. Chem. 2017; 15: 3706
  • 38 Hodík T, Schneider C. Chem. Eur. J. 2018; 24: 18082
  • 39 Li L.-Z, Wang C.-S, Guo W.-F, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 614
  • 40 Kretzschmar M, Hofmann F, Moock D, Schneider C. Angew. Chem. Int. Ed. 2018; 57: 4774 ; Angew. Chem. 2018, 130, 4864
  • 41 Liu BP. L, Chong EY. Y, Cheung FW. K, Duan J.-A, Che C.-T, Liu WK. Biochem. Pharmacol. 2005; 70: 287
  • 42 Duan J.-A, Williams ID, Che C.-T, Zhou R.-H, Zhao S.-X. Tetrahedron Lett. 1999; 40: 2593
  • 43 Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P. Pure Appl. Chem. 2001; 73: 1795
  • 44 Li X, Li H, Song W, Tseng P, Liu L, Guzei IA, Tang W. Angew. Chem. Int. Ed. 2015; 54: 12905
  • 45 Abaev VT, Plieva AT, Chalikidi PN, Uchuskin MG, Trushkov IV, Butin AV. Org. Lett. 2014; 16: 4150
  • 46 Miki T, Kori M, Mabuchi H, Banno H, Tozawa R, Nakamura M, Itokawa S, Sugiyama Y, Yukimasa H. Bioorg. Med. Chem. 2002; 10: 401
  • 47 Thummanapelli SK, Hosseyni S, Su Y, Akhmedov NG, Shi X. Chem. Commun. 2016; 52: 7687
  • 48 Sádaba D, Delso I, Tejero T, Merino P. Tetrahedron Lett. 2011; 52: 5976
  • 49 Sugasawa T, Toyoda T, Adachi M, Sasakura K. J. Am. Chem. Soc. 1978; 100: 4842
  • 50 Shen H, Deng Q, Liu R, Feng Y, Zheng C, Xiong Y. Org. Chem. Front. 2017; 4: 1806
  • 51 Chen VX, Boyer F.-D, Rameau C, Pillot J.-P, Vors J.-P, Beau J.-M. Chemistry 2013; 19: 4849
  • 52 Mancuso AJ, Huang S.-L, Swern D. J. Org. Chem. 1978; 43: 2480
  • 53 Johnson KF, Schmidt AC, Stanley LM. Org. Lett. 2015; 17: 4654
  • 54 Petrignet J, Boudhar A, Blond G, Suffert J. Angew. Chem. Int. Ed. 2011; 50: 3285
  • 55 Seo H.-A, Cheon C.-H. J. Org. Chem. 2016; 81: 7917
  • 56 Chen J.-H, Chen Z.-C, Zhao H, Zhang T, Wang W.-J, Zou Y, Zhang X.-J, Yan M. Org. Biomol. Chem. 2016; 14: 4071
  • 57 Pang X, Lou Z, Li M, Wen L, Chen C. Eur. J. Org. Chem. 2015; 3361
  • 58 Thirupathi N, Puri S, Reddy TJ, Sridhar B, Reddy MS. Adv. Synth. Catal. 2016; 358: 303
  • 59 Rueping M, Nachtsheim BJ, Koenigs RM, Ieawsuwan W. Chem. Eur. J. 2010; 16: 13116