Synthesis 2021; 53(18): 3355-3360
DOI: 10.1055/a-1516-9399
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Strategic Synthesis of Asymmetrically Substituted C4N4 Fluorophores

Wei Xu
a  Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
,
Miki Kohei
b  Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
,
a  Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
,
a  Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
b  Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
› Author Affiliations
This work was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant Numbers JP19K22192 (Grant-in-Aid for Exploratory Research, to N.K.) and JP20H02746 (Grant-in-Aid for Scientific Research (B)), to N.K.]. N.K. also thanks the Japan Agency for Medical Research and Development (AMED) (Grant Number JP21wm0325008) for financial support.


Abstract

C4N4 fluorophores comprise a recently disclosed new class of emissive organic molecules with modular synthetic capabilities. Herein, we report a new synthetic protocol toward asymmetrically di­arylated C4N4 fluorescent materials. Direct monoarylation of 1-naphthol is exploited to suppress undesired diarylation and to provide a free phenolic hydroxy group for prospective linking to a molecule of interest. Installation of the second aromatic unit in order to acquire fluorescent properties is achieved by Suzuki–Miyaura cross-coupling.

Supporting Information



Publication History

Received: 08 May 2021

Accepted after revision: 25 May 2021

Publication Date:
25 May 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Lavis LD, Raines RT. ACS Chem. Biol. 2014; 9: 855
    • 2b Lavis LD. Biochemistry 2017; 56: 5165
    • 3a Lavis LD, Raines RT. ACS Chem. Biol. 2008; 3: 142
    • 3b Gonçalves MS. T. Chem. Rev. 2009; 109: 190
    • 3c Kalia J, Raines RT. Curr. Org. Chem. 2010; 14: 138
    • 3d Xu W, Zeng Z, Jiang J.-H, Chang Y.-T, Yuan L. Angew. Chem. Int. Ed. 2016; 55: 13658
    • 4a Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD. Nat. Methods 2015; 12: 244
    • 4b Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD. Nat. Methods 2017; 14: 987
    • 5a Shirai K, Yanagisawa A, Takahashi H, Fukunishi K, Matsuoka M. Dyes Pigm. 1998; 39: 49
    • 5b Noda H, Asada Y, Maruyama T, Takizawa N, Noda NN, Shibasaki M, Kumagai N. Chem. Eur. J. 2019; 25: 4299
    • 5c Noda H, Asada Y, Shibasaki M, Kumagai N. Org. Biomol. Chem. 2019; 17: 1813
    • 6a Qu J, Kohl C, Pottek M, Mullen K. Angew. Chem. Int. Ed. 2004; 43: 1528
    • 6b Namba K, Osawa A, Ishizaka S, Kitamura N, Tanino K. J. Am. Chem. Soc. 2011; 133: 11466
    • 6c Beppu T, Tomiguchi K, Masuhara A, Pu YJ, Katagiri H. Angew. Chem. Int. Ed. 2015; 54: 7332
    • 6d Shimizu M, Ryuse D, Kinoshita T. Chem. Eur. J. 2017; 23: 14623
    • 6e Hu F, Zeng C, Long R, Miao Y, Wei L, Xu Q, Min W. Nat. Methods 2018; 15: 194
    • 6f Lin HA, Sato Y, Segawa Y, Nishihara T, Sugimoto N, Scott LT, Higashiyama T, Itami K. Angew. Chem. Int. Ed. 2018; 57: 2874
    • 6g Wan H, Yue J, Zhu S, Uno T, Zhang X, Yang Q, Yu K, Hong G, Wang J, Li L, Ma Z, Gao H, Zhong Y, Su J, Antaris AL, Xia Y, Luo J, Liang Y, Dai H. Nat. Commun. 2018; 9: 1171
    • 6h White BM, Zhao Y, Kawashima TE, Branchaud BP, Pluth MD, Jasti R. ACS Cent. Sci. 2018; 4: 1173
    • 7a Pal M, Batchu VR, Parasuraman K, Yeleswarapu KR. J. Org. Chem. 2003; 68: 6806
    • 7b Pal M, Batchu VR, Dager I, Swamy NK, Padakanti S. J. Org. Chem. 2005; 70: 2376
    • 7c Kodimuthali A, Chary BC, Prasunamba PL, Pal M. Tetrahedron Lett. 2009; 50: 1618
    • 7d Kumar S, Sahu DP. J. Heterocycl. Chem. 2009; 46: 748
    • 8a Miyaura N, Yanagi T, Suzuki A. Synth. Commun. 1981; 11: 513
    • 8b Suzuki A. Acc. Chem. Res. 1982; 15: 178
    • 8c Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
  • 9 The absorption spectra of 5 and 6 are presented in the Supporting Information.
    • 10a Gu X, Kwok RT. K, Lam JW. Y, Tang BZ. Biomaterials 2017; 146: 115
    • 10b Qian J, Tang BZ. Chem 2017; 3: 56
  • 11 Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ. Chem. Rev. 2015; 115: 11718