Synthesis 2021; 53(18): 3333-3342
DOI: 10.1055/a-1506-3884
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Iridium-Catalyzed Site-Selective Borylation of 8-Arylquinolines

Mirja Md Mahamudul Hassan
a   Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
,
Md Emdadul Hoque
a   Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
,
Sayan Dey
a   Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
,
Saikat Guria
a   Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
,
Brindaban Roy
b   University of Kalyani, Chemistry Department, Kalyani, Nadia, 741235, West Bengal, India
,
Buddhadeb Chattopadhyay
a   Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
› Author Affiliations
This work was supported by the Science and Engineering Research Board (SERB)-SUPRA (SPR/2019/000158), SERB-CRG (CRG/2018/000133), and SERB-STAR AWARD (STR/2019/000045). M.M.M.H. and M.E.H. thank University Grant Commission (UGC) for their Senior Research Fellowhips. S.D. and S.G. thank the Council of Scientific and Industrial Research (CSIR) for their Junior Research Fellowships. We also thank the Center of Bio-medical Research (CBMR) for research facilities.


Abstract

We report a convenient method for the highly site-selective borylation of 8-arylquinoline. The reaction proceeds smoothly in the presence of a catalytic amount of [Ir(OMe)(cod)]2 and 2-phenylpyridine derived ligand using bis(pinacolato)diborane as the borylating agent. The reactions occur with high selectivity with many functional groups, providing a series of borylated 8-aryl quinolines with good to excellent yield and excellent selectivity. The borylated compounds formed in this method can be transformed into various important synthons by using known transformations.

Supporting Information



Publication History

Received: 30 March 2021

Accepted after revision: 11 May 2021

Accepted Manuscript online:
11 May 2021

Article published online:
07 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Bioactive compounds, see:
    • 1a Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles, 2nd ed. Wiley-VCH; Weinheim: 2003
    • 1b Michael JP. Nat. Prod. Rep. 2008; 25: 166
  • 2 For dyes, see: McAteer CH, Balasubramanian M, Murugan R. Comprehensive Heterocyclic Chemistry III, Vol. 7, Chap. 7.06. Katrizky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 309

    • For OLEDs, see:
    • 3a Shinar J. Organic Light-Emitting Devices: A Survey. Springer; Berlin: 2003
    • 3b Bulovic V, Baldo MA, Forrest SR. In Organic Electronic Materials . Farchioni R, Grosso G. Springer; Berlin: 2001: 391
    • 3c Chen CH, Shi J. Coord. Chem. Rev. 1998; 171: 161
  • 4 Keller PA. In Comprehensive Heterocyclic Chemistry III, Vol. 7.05. Katrizky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 217-308
  • 5 Joule JA, Mills K. Heterocyclic Chemistry . Blackwell; Chichester: 2010
    • 6a Majumder S, Gipson KR, Odom AL. Org. Lett. 2009; 11: 4720
    • 6b Horn J, Marsden SP, Nelson A, House D, Weingarten GG. Org. Lett. 2008; 10: 4117
    • 7a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 7b Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 7c Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Farooq ZM, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 7d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 8a Berman AM, Lewis JC, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008; 130: 14926
    • 8b Ryu J, Cho SH, Chang S. Angew. Chem. Int. Ed. 2012; 124: 3737
    • 9a Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
    • 9b Xiao B, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 616
    • 10a Tobisu M, Hyodo I, Chatani N. J. Am. Chem. Soc. 2009; 131: 12070
    • 10b Hyodo I, Tobisu M, Chatani N. Chem. Asian J. 2012; 7: 1357
  • 11 Zhao D, Wang W, Yang F, Lan J, Yang L, Gao G, You J. Angew. Chem. Int. Ed. 2009; 48: 3296
  • 12 Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
  • 13 Bi W, Sun K, Qu C, Chen X, Qu L, Zhu S, Li X, Wu H, Duan L, Zhao Y. Org. Chem. Front. 2017; 4: 1595
    • 14a Kwak J, Kim M, Chang S. J. Am. Chem. Soc. 2011; 133: 3780
    • 14b Boudet N, Lachs JR, Knochel P. Org. Lett. 2007; 9: 5525
  • 15 Luo J, Zhang T, Wang L, Liao G, Yao Q.-J, Wu Y.-J, Zhan B.-B, Lan Y, Lin X.-F, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 6708
    • 16a Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z. Nat. Chem. Biol. 2010; 6: 442
    • 16b Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624
    • 17a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 17b Ros A, Fernandez R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 17c Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
    • 17d Wright JS, Scott PJ. H, Steel PG. Angew. Chem. Int. Ed. 2020; 59: 2
    • 17e Haldar C, Hoque ME, Bisht R, Chattopadhyay B. Tetrahedron Lett. 2018; 59: 1269
    • 18a Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 18b Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Wiley-VCH; Weinheim: 2005
    • 19a Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
    • 19b Ghaffari B, Preshlock SM, Plattner DL, Staples RJ, Maligres PE, Krska SW, Maleczka RE. Jr, Smith MR. III. J. Am. Chem. Soc. 2014; 136: 14345
    • 19c Wang G, Liu L, Wang H, Ding Y.-S, Zhou J, Mao S, Li P. J. Am. Chem. Soc. 2017; 139: 91
    • 19d Ishiyama T, Isou H, Kikuchi T, Miyaura N. Chem. Commun. 2010; 46: 159
    • 19e Bai ST, Bheeter CB, Reek JN. H. Angew. Chem. Int. Ed. 2019; 58: 13039
    • 19f Hoque ME, Hassan MM. M, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 5022
    • 20a Ros A, Estepa B, Lopez-Rodríguez R, Alvarez E, Fernandez R, Lassaletta JM. Angew. Chem. Int. Ed. 2011; 50: 11724
    • 20b Kawamorita S, Miyazaki T, Ohmiya H, Iwai T, Sawamura M. J. Am. Chem. Soc. 2011; 133: 19310
    • 20c Ros A, López-Rodríguez R, Estepa B, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2012; 134: 4573
    • 20d Sasaki I, Amou T, Ito H, Ishiyama T. Org. Biomol. Chem. 2014; 12: 2041
    • 20e Bisht R, Chattopadhyay B. J. Am. Chem. Soc. 2016; 138: 84
    • 20f Roering AJ, Hale LV. A, Squier PA, Ringgold MA, Wiederspan ER, Clark TB. Org. Lett. 2012; 42: 3558
    • 20g Bisht R, Chattopadhyay B. Synlett 2016; 27: 2043
    • 21a Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 7534
    • 21b Robbins DW, Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 4068
    • 22a Li HL, Kuninobu Y, Kanai M. Angew. Chem. Int. Ed. 2017; 56: 1495
    • 22b Liu L, Wang G, Jiao J, Li P. Org. Lett. 2017; 19: 6132
    • 22c Li HL, Kanai M, Kuninobu Y. Org. Lett. 2017; 19: 5944
  • 23 Itoh H, Kikuchi T, Ishiyama T, Miyaura N. Chem. Lett. 2011; 40: 1007
  • 24 Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N. Tetrahedron Lett. 2002; 43: 5649
  • 25 Tajuddin H, Harrisson P, Bitterlich B, Collings JC, Sim N, Batsanov AS, Cheung MS, Kawamorita S, Maxwell AC, Shukla L, Morris J, Lin Z, Marder TB, Steel PG. Chem. Sci. 2012; 3: 3505
  • 26 Konishi S, Kawamorita S, Iwai T, Steel PG, Marder TB, Sawamura M. Chem. Asian J. 2014; 9: 434
  • 27 Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
  • 28 Li H.-C, Chou P.-T, Hu Y.-H, Cheng Y.-M, Liu R.-S. Organometallics 2005; 24: 1329
  • 29 Ishiyama T, Takagi J, Hartwig JF, Miyaura N. Angew. Chem. Int. Ed. 2002; 41: 3056
  • 30 Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
  • 31 We have examined substrate 1b for this study with L2 and L8 ligands. With L8 ligand 1b gave site-selective borylation with 75% isolated yield. With L2 ligand >95% conversion of the substrate with multiple borylation was observed, with the borylation occurring primarily at the quinoline ring.
  • 32 Sarkar DS, Kumar NY. P, Ackermann L. Chem. Eur. J. 2017; 23: 84
  • 33 Yoshino J, Kano N, Kawashima T. J. Org. Chem. 2009; 74: 7496