Synthesis 2021; 53(20): 3744-3750
DOI: 10.1055/a-1493-6885
feature

N-Selenocyanato-Dibenzenesulfonimide: A New Electrophilic Selenocyanation Reagent

Deng Zhu
,
Ai-Hui Ye
,
Zhi-Min Chen
We thank the NSFC (Nos. 21871178, 22071149, 21702135), and the STCSM (19JC1430100) for the financial support. This research was also supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.


Abstract

A new electrophilic selenocyanation reagent N-seleno­cyanato-dibenzenesulfonimide was readily prepared in two steps from commercially available dibenzenesulfonimide for the first time. A variety of electrophilic selenocyanato reactions of nucleophiles have been achieved using it as selenocyanato source under mild and simple conditions. Numerous SeCN-containing compounds were obtained in moderate to excellent yields. Meanwhile, a Lewis acid mediated tandem selenocyanation/cyclization reaction of alkenes with phenols, which provided simple methods for the formation of various SeCN-containing chromanes and dihydrobenzofurans in moderate to good yields, has also been developed.

Supporting Information



Publication History

Received: 31 March 2021

Accepted after revision: 28 April 2021

Accepted Manuscript online:
28 April 2021

Article published online:
18 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tang Q, Bian Z, Wu W, Wang J, Xie P, Pittman CU, Zhou A. J. Org. Chem. 2017; 82: 10622
    • 1b Weekley CM, Harris HH. Chem. Soc. Rev. 2013; 42: 8870
    • 1c Mugesh G, Singh HB. Chem. Soc. Rev. 2000; 29: 347
    • 2a Wang X.-Y, Zhong Y.-F, Mo Z.-Y, Wu S.-H, Xu Y.-L, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2021; 363: 208
    • 2b Liu H.-Y, Zhang J.-R, Huang G.-B, Zhou Y.-H, Chen Y.-Y, Xu Y.-L. Adv. Synth. Catal. 2021; 363: 1656
    • 2c Meng X.-J, Zhong P.-F, Wang Y.-M, Wang H.-S, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2020; 362: 506
    • 2d Sun L, Yuan Y, Yao M, Wang H, Wang D, Gao M, Chen Y.-H, Lei A. Org. Lett. 2019; 21: 1297
    • 2e Guan Z, Wang Y, Wang H, Huang Y, Wang S, Tang H, Zhang H, Lei A. Green Chem. 2019; 21: 4976
    • 2f Zhang X, Wang C, Jiang H, Sun L. RSC Adv. 2018; 8: 22042
    • 2g Martins IL, Charneira C, Gandin V, Ferreira Da Silva JL, Justino GC, Telo JP, Vieira AJ. S. C, Marzano C, Antunes AM. M. J. Med. Chem. 2015; 58: 4250
    • 2h Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 3a Sun K, Lv Y, Chen Y, Zhou T, Xing Y, Wang X. Org. Biomol. Chem. 2017; 15: 4464
    • 3b Maity P, Paroi B, Ranu BC. Org. Lett. 2017; 19: 5748
    • 3c Wang Z, Ji X, Hu M, Tang R. Tetrahedron Lett. 2015; 56: 5067
    • 3d Singha Roy S, Ghosh P, Hossain SkU, Chakraborty P, Biswas J, Mandal S, Bhattacharjee A, Bhattacharya S. Bioorg. Med. Chem. Lett. 2010; 20: 6951
    • 3e Prakash O, Rani N, Sharma V, Moriarty RM. Synlett 1997; 1255
  • 4 Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK. J. Med. Chem. 2016; 59: 1946
    • 5a Mukherjee N, Kundu D, Ranu BC. Adv. Synth. Catal. 2017; 359: 329
    • 5b Guan Y, Townsend SD. Org. Lett. 2017; 19: 5252
    • 5c Krief A, Dumont W, Delmotte C. Angew. Chem. Int. Ed. 2000; 39: 1669
    • 5d Krief A, Delmotte C, Dumont W. Tetrahedron 1997; 53: 12147

      For selected examples, see:
    • 6a Guo W, Tan W, Zhao M, Zheng L, Tao K, Chen D, Fan X. J. Org. Chem. 2018; 83: 6580
    • 6b Frei R, Courant T, Wodrich MD, Waser J. Chem. Eur. J. 2015; 21: 2662
    • 6c Feng C, Peng Y, Ding G, Li X, Cui C, Yan Y. Chem. Commun. 2018; 54: 13367
    • 6d Redon S, Kosso AR. O, Broggi J, Vanelle P. Tetrahedron Lett. 2017; 58: 2771
    • 6e Redon S, Kosso AR. O, Broggi J, Vanelle P. Synthesis 2019; 51: 3758
    • 7a Gao M, Vuagnat M, Chen M.-Y, Pannecoucke X, Jubault P, Besset T. Chem. Eur. J. 2021; 27: 6145
    • 7b Xiao J.-A, Li Y.-C, Cheng X.-L, Chen W.-Q, Cui J, Huang Y, Huang J, Xiao Q, Su W, Yang H. Org. Chem. Front. 2019; 6: 1967
    • 7c Wu D, Qiu J, Li C, Yuan L, Yin H, Chen F.-X. J. Org. Chem. 2020; 85: 934
    • 7d Xiao J.-A, Cheng X.-L, Meng R.-F, Qin X.-S, Peng H, Ren J.-W, Xie Z.-Z, Cui J.-G, Huang Y.-M. Synthesis 2021; 53: 954
    • 8a Xie Y.-Y, Chen Z.-M, Luo H.-Y, Shao H, Tu Y.-Q, Bao X.-G, Cao R.-F, Zhang S.-Y, Tian J.-M. Angew. Chem. Int. Ed. 2019; 58: 12491
    • 8b Luo H.-Y, Xie Y.-Y, Song X.-F, Dong J.-W, Zhu D, Chen Z.-M. Chem. Commun. 2019; 55: 9367
    • 8c Luo H.-Y, Dong J.-W, Xie Y.-Y, Song X.-F, Zhu D, Ding T.-M, Liu Y.-Y, Chen Z.-M. Chem. Eur. J. 2019; 25: 15411
    • 8d Song X.-F, Ye A.-H, Xie Y.-Y, Dong J.-W, Chen C, Zhang Y, Chen Z.-M. Org. Lett. 2019; 21: 9550
    • 8e Song X.-F, Ding T.-M, Zhu D, Huang J, Chen Z.-M. Org. Lett. 2020; 22: 7052
    • 9a Ye A.-H, Zhang Y, Xie Y.-Y, Luo H.-Y, Dong J.-W, Liu X.-D, Song X.-F, Ding T.-M, Chen Z.-M. Org. Lett. 2019; 21: 5106
    • 9b Li C, Long P, Wu H, Yin H, Chen F.-X. Org. Biomol. Chem. 2019; 17: 7131
  • 10 CCDC 2061576 (1d) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 11 CCDC 2073817 (5d) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures