Synlett 2021; 32(19): 1897-1910
DOI: 10.1055/a-1480-6474
account

Designed Synthesis of Diversely Substituted Hydantoins and Hydantoin-Based Hybrid Molecules: A Personal Account

Vinod Kumar
Author thanks DRDO, New Delhi for financial support of this work.


Abstract

Hydantoin and its analogues such as thiohydantoin and iminohydantoin have received substantial attention from both a chemical and a biological point of view. Several compounds of this class have shown useful pharmacological activities such as anticonvulsant, antitumor, antiarrhythmic, and herbicidal properties that have led, in some cases, to clinical applications. Because of these broad-spectrum activities, intensive research efforts have been dedicated in industry and academia to the synthesis and structural modifications of hydantoin and its derivatives. Realizing the importance of hydantoin in organic and medicinal chemistry, we also initiated a research program that successfully designed and developed new routes and methods for the formation of hydantoin, thiohydantoin, and iminohydantoin substituted at various positions, particularly at the N-1 position without following a protection–deprotection strategy. Because combinations of two or more pharmacophoric groups can lead to hybrid molecules that display a mixed mechanism of action on biological targets, we extended our developed strategy to the syntheses of new types of hydantoin-based hybrid molecules by combining hydantoin with a triazole, isoxazoline, or phosphate scaffold as a second pharmacophore to exploit their diverse biological functions.

1 Introduction

2 Chemistry and Properties

2.1 Physical Properties

2.2 Chemical Properties

2.3 Biological Properties

3 General Synthetic Methods

4 Synthesis of Diversely Substituted Hydantoins

5 Synthesis of Diversely Substituted Thiohydantoins

6 Synthesis of Diversely Substituted Iminohydantoins

7 Fused or Bicyclic (Thio)hydantoins

8 Di- or Multivalent (Thio)hydantoins

9 Hydantoin-Based Hybrid Molecules

9.1 Hydantoin–Isooxazoline Hybrids

9.2 Hydantoin–Triazole Hybrids

9.3 Hydantoin–Phosphate Hybrids: Phosphorylated Hydantoins

10 Summary and Outlook



Publication History

Received: 05 April 2021

Accepted after revision: 12 April 2021

Accepted Manuscript online:
12 April 2021

Article published online:
25 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Avendaño C, Menendez JC. In Kirk-Othmer Encyclopedia of Chemical Technology . Wiley; New York: 2000. DOI: 10.1002/0471238961.0825040101220514.a01
  • 2 Cho S, Kim S.-H, Shin D. Eur. J. Med. Chem. 2019; 164: 517
  • 3 Schipper ES, Day AR. In Heterocyclic Compounds, Vol. 5. Elderfield R. C., Wiley; New York: 1957: 254
  • 4 Baeyer A. Justus Liebigs Ann. Chem. 1861; 119: 126
  • 5 Ware E. Chem. Rev. 1950; 46: 403
  • 6 Konnert L, Lamaty F, Martinez J, Colacino E. Chem. Rev. 2017; 117: 13757
  • 7 Arca M, Demartin F, Devillanova FA, Garau A, Isaia F, Lippolis V, Verani G. Inorg. Chem. 1998; 37: 4164
  • 8 Harrington PM, Jung ME. Tetrahedron Lett. 1994; 35: 5145
  • 9 Jamieson AG, Russell D, Hamilton AD. Chem. Commun. 2012; 48: 3709
  • 10 Syldatk C, Läufer A, Müller R, Höke H. Adv. Biochem. Eng./Biotechnol. 1990; 41: 29
  • 11 Metwally MA, Abdel-Latif E. J. Sulfur Chem. 2012; 33: 229
  • 12 Koketsu M, Takahashi A, Ishihara H. J. Heterocycl. Chem. 2007; 44: 79
  • 13 Ivanenkov YA, Veselov MS, Rezekin IG, Skvortsov DA, Sandulenko YB, Polyakova MV, Bezrukov DS, Vasilevsky SV, Kukushkin ME, Moiseeva AA, Finko AV, Koteliansky VE, Klyachko NL, Filatova LA, Beloglazkina EK, Zyk NV, Majouga AG. Bioorg. Med. Chem. 2016; 24: 802
  • 14 Bausch MJ, David B, Dobrowolski P, Prasad V. J. Org. Chem. 1990; 55: 5806
  • 15 Rosenberg LS, Jackson JL. Drug Dev. Ind. Pharm. 1989; 15: 373
  • 16 Bausch MJ, David B, Dobrowolski P, Guadalupe-Fasano C, Gostowski R, Selmartin D, Prasad V, Vaughn A, Wang LH. J. Org. Chem. 1991; 56: 5643
  • 17 Lopez CA, Trigo GG. Adv. Heterocycl. Chem. 1985; 38: 177l
  • 18 Divanfard HR, Ibrahim YA, Joullié MM. J. Heterocycl. Chem. 1978; 15: 691
  • 19 Orazi OO, Corral RA, Schuttenberg H. J. Chem. Soc., Perkin Trans. 1 1974; 219
  • 20 Orazi OO, Corral RA. Experientia 1965; 21: 508
  • 21 Aly YL. J. Sulfur Chem. 2007; 28: 371
  • 22 Boeijen A, Liskamp RM. J. Eur. J. Org. Chem. 1999; 2127
  • 23 Marinova, P.; Marinov, M.; Kazakova, M.; Feodorova, Y.; Slavchev, A.; Blazheva, D.; Georgiev, D.; Penchev, P.; Sarafian, V.; Stoyanov, N. Acta. Chim. Slov. 2016, 63, 26.
  • 24 Smith RG, Daves GD. Jr, Lynn RK, Gerber N. Biomed. Mass Spectrom. 1977; 4: 275
  • 25 López-Alvarado F, Avendaño C, Menéndez JC. Tetrahedron Lett. 1992; 33: 6875
  • 26 Khodair AI. Carbohydr. Res. 2001; 331: 445
  • 27 Fraile JM, Lafuente G, Mayoral JA, Pallarés A. Tetrahedron 2011; 67: 8639
  • 28 Tan S.-F, Ang K.-P, Fong Y.-F, Jayachandran H. J. Chem. Soc., Perkin Trans. 2 . 1988; 1941
  • 29 Gregg BT, Earley WG, Golden KC, Quinn JF, Razzano DA, Rennells WM. Synthesis 2006; 4200
  • 30 Wynands L, Delacroix S, Van Nhien AN, Soriano E, Marco-Contelles J, Postel D. Tetrahedron 2013; 69: 4899
  • 31 Šmit B, Rodić M, Pavlović RZ. Synthesis 2016; 48: 387
  • 32 Pham TQ, Pyne SG, Skelton BW, White AH. J. Org. Chem. 2005; 70: 6369
  • 33 Chen X, Choo H, Huang X.-P, Yang X, Stone O, Roth BL, Jin J. ACS Chem. Neurosci. 2015; 6: 476
  • 34 Ogawa J, Horinouchi N, Shimizu S. Enzyme Catalysis in Organic Synthesis . Drauz K., Gröger H., May O., Wiley-VCH; Berlin: 2012. Chap. 16, 651
  • 35 Nandanwar HS, Hoondal GS, Vohra RM. Methods Biotechnol. 2005; 17: 91
  • 36 Wilk IJ, Close W. J. Org. Chem. 1950; 15: 1020
  • 37 Cortes J, Kohn H. J. Org. Chem. 1983; 48: 2246
  • 38 Marshall FJ. J. Am. Chem. Soc. 1956; 78: 3696
  • 39 de la Cuesta E, Ballesteros P, Trigo GG. Heterocycles 1981; 16: 1647
  • 40 Wolfe DM, Schreiner PR. Synthesis 2007; 2002
  • 41 Bakalova A, Buyukliev R, Momekov G, Ivanov D, Todorovd D, Konstantinovc S, Karaivanovac M. Eur. J. Med. Chem. 2005; 40: 590
  • 42 Bakalova A, Buyukliev R, Momekov G. J. Mol. Struct. 2015; 1091: 118

    • See (all accessed Apr 29, 2021):
    • 43a 1,3-Dichloro-5,5-dimethylhydantoin: https://www.sigmaaldrich.com/catalog/substance/13dichloro55dimethylhydantoin1970211852511
    • 43b 1,3-Dibromo-5,5-dimethylhydantoin: https://www.sigmaaldrich.com/catalog/product/aldrich/157902
    • 43c 1,3-Diido-5,5-dimethylhydantoin: https://www.sigmaaldrich.com/catalog/product/aldrich/711624.
  • 44 Bastidas Ángel AY, Bragança EF, Alberto EE. ChemistrySelect 2019; 4: 11548
  • 45 Yan J, Ni T, Yan F. Tetrahedron Lett. 2015; 56: 1096
  • 46 Corral RA, Orazi OO. J. Org. Chem. 1963; 28: 1100
  • 47 Biltz H. Ber. Dtsch. Chem. Ges. 1908; 41: 1379
  • 48 Merrit HH, Putman TJ. JAMA J. Am. Med. Assoc. 1938; 111: 1068
  • 49 Maccari R, Del Corso A, Giglio M, Moschini R, Mura U, Ottanà R. Bioorg. Med. Chem. Lett. 2011; 21: 200
  • 50 Dhara K, Midya GC, Dash J. J. Org. Chem. 2012; 77: 8071
  • 51 Abdulrahman LK, Al-Mously MM, Al-Mosuli ML, Al-Azzawii KK. Int. J. Pharm. Pharm. Sci. 2013; 5: 494
  • 52 Cernak TA, Gleason JL. J. Org. Chem. 2008; 73: 102
  • 53 Zancanella MA, Romo D. Org. Lett. 2008; 10: 3685
  • 54 Park YS, Seo S, Kim E.-H, Paek K. Org. Lett. 2011; 13: 5904
  • 55 Zuo M, Xu X, Xie Z, Ge R, Zhang Z, Li Z, Bian J. Eur. J. Med. Chem. 2017; 125: 1002
  • 56 Patil AD, Freyer AJ, Killmer L, Hofmann G, Johnson RK. Nat. Prod. Res. 1997; 9: 201
  • 57 Nakajima N, Matsumoto M, Kirihara M, Hashimoto M, Katoh T, Terashima S. Tetrahedron 1996; 52: 1177
  • 58 Uemoto H, Tsuda M, Kobayashi J. J. Nat. Prod. 1999; 62: 1581
  • 59 Meusel M, Gütschow M. Org. Prep. Proced. Int. 2004; 36: 391
  • 60 Read WT. J. Am. Chem. Soc. 1922; 44: 1746
  • 61 Scozzafava A, Supuran CT. J. Med. Chem. 2000; 43: 1858
  • 62 von Geldern TW, Kester JA, Bal R, Wu-Wong JR, Chiou W, Dixon DB, Opgenorth TJ. J. Med. Chem. 1996; 39: 968
  • 63 Edward JT. Jitransgri C. Can. J. Chem. 1975; 53: 3339
  • 64 Li JJ. In Name Reactions: A Collection of Detailed Reaction Mechanisms. Springer; Berlin: 2006: 92
  • 65 Muccioli GG, Poupaert JH, Wouters J, Norberg B, Poppitz W, Scriba GK. E, Lambert DM. A. Tetrahedron 2003; 59: 1301
  • 66 Nique F, Hebbe S, Triballeau N, Peixoto C, Lefrancois J.-M, Jary H, Alvey L, Manioc M, Housseman C, Klaassen H, Van Beeck K, Guédin D, Namour F, Minet D, Van der Aar E, Feyen J, Fletcher S, Blanqué R, Robin-Jagerschmidt C, Deprez P. J. Med. Chem. 2012; 55: 8236
  • 67 Ignacio JM, Macho S, Marcaccini S, Pepino R, Torroba TA. Synlett 2005; 3051
  • 68 Diness F, Beyer J, Meldal M. Chem. Eur. J. 2006; 12: 8056
  • 69 Zhang D, Xing X, Cuny GD. J. Org. Chem. 2006; 71: 1750
  • 70 Volonterio A, Ramirez deArellano C, Zanda M. J. Org. Chem. 2005; 70: 2161
  • 71 Bhalay G, Cowell D, Hone ND, Scobie M, Baxter AD. Mol. Diversity 1997; 3: 195
  • 72 Gbaguidi FA, Kpoviessi SS. D, Kapanda CN, Muccioli GG, Lambert DM, Accrombessi GC, Moudachirou M, Poupaert JH. Pure Appl. Chem. 2011; 5: 168
  • 73 Tang Y, Cheng Q, Wang S, Zhang J. Monatsh. Chem. 2014; 145: 1501
  • 74 Kumar V, Kaushik MP. Synlett 2007; 2937
  • 75 Prabhath MR, Williams L, Bhat SV, Sharma P. Molecules 2017; 22: 615 ; and references therein.
  • 76 Kumar V, Kaushik MP, Mazumdar A. Eur. J. Org. Chem. 2008; 1910
  • 77 Kumar V, Rana H, Sankolli R, Kaushik MP. Tetrahedron Lett. 2011; 52: 6148
  • 78 Edward JT. Chem. Org. Sulfur Compd. 1966; 2: 287
  • 79 Tompkins JE. J. Med. Chem. 1986; 29: 855
  • 80 Al-Obaid AM, El-Subbagh HI, Khodair AI, Elmazar MM. A. Anti-Cancer Drugs 1996; 7: 873
  • 81 Takahashi A, Matsuoka H, Ozawa Y, Uda Y. J. Agric. Food Chem. 1998; 46: 5037
  • 82 Marx JV, Richert DA, Westerfeld WW. J. Med. Chem. 1970; 13: 1179
  • 83 El-Barbary AA, Khodair AI, Pedersen EB, Nielsen C. J. Med. Chem. 1994; 37: 73
  • 84 Chérouvrier J.-R, Carreaux F, Bazureau JP. Molecules 2004; 9: 867 ; and references cited therein
  • 85 Archer S, Unser MJ. Froelich E. J. Am. Chem. Soc. 1956; 78: 6182
  • 86 Lacroix G, Bascou J.-P, Perez J, Gadras A. US 6018052 2000
  • 87 Curran AC. W. US 3984430 1976
  • 88 Nagpal KL. US 4473393 1984
  • 89 Mo B, Li J, Liang S. Anal. Biochem. 1997; 249: 207
  • 90 Nelson JV, Helber MJ, Brick MC. US 5695917 1997
  • 91 Kandil SS, El-Hefnawy GB, Baker EA. Thermochim. Acta 2004; 414: 105
  • 92 Kumar V, Rana H, Sankolli R, Kaushik MP. Tetrahedron Lett. 2012; 53: 2377
  • 93 Kwon C.-H, Iqbal MT, Wurpel JN. D. J. Med. Chem. 1991; 34: 1845
  • 94 Sun Z.-Y, Kwon C.-H, Wurpel JN. D. J. Med. Chem. 1994; 37: 2841
  • 95 Kung C.-H, Wurpel JN. D, Kwon C.-H. Drug Dev. Res. 1999; 47: 17
  • 96 Scala F, Fattorusso E, Menna M, Taglialatela-Scafati O, Tierney M, Kaiser M, Tasdemir D. Mar. Drugs 2010; 8: 2162
  • 97 Narayanan S, Appleton HD. Clin. Chem. (Washington, DC U. S.) 1980; 26: 1119
  • 98 Malamas MS, Erdei J, Gunawan I, Turner J, Hu Y, Wagner E, Fan K, Chopra R, Olland A, Bard J, Jacobsen S, Magolda RL, Pangalos M, Robichaud AJ. J. Med. Chem. 2010; 53: 1146
  • 99 DiMartino M, Wolff C, Patil A, Nambi P. Inflammation Res. 1995; 44: S123
  • 100 Liu X, Wang X, Li Q, Kozar MP, Melendez V, O’Neil MT, Lin AJ. J. Med. Chem. 2011; 54: 4523
  • 101 Roshak A, Jackson JR, Chabot-Fletcher M, Marshall LA. J. Pharmacol. Exp. Ther. 1997; 283: 955
  • 102 Orner BP, Hamilton AD. J. J. Inclusion Phenom. Macrocycl. Chem. 2001; 41: 141
  • 103 Kumar V, Rana H, Kaushik MP. Tetrahedron Lett. 2012; 53: 6423
  • 104 Smissman EE, Chien PL, Robinson RA. J. Org. Chem. 1970; 35: 3818
  • 105 López-Rodríguez ML, Morcillo MJ, Fernández E, Porras E, Murcia M, Sanz AM, Orensanz L. J. Med. Chem. 1997; 40: 2653
  • 106 Alonso D, Vázquez-Villa H, Gamo AM, Martínez-Esperón MF, Tortosa M, Viso A, Fernández de la Pradilla R, Junquera E, Aicart E, Martín-Fontecha M, Benhamú B, López-Rodríguez ML, Ortega-Gutiérrez S. ACS Med. Chem. Lett. 2010; 1: 249
  • 107 Zhou J, He X, Li Y. Anal. Commun. 1999; 36: 243
  • 108 Kumar V. Bull. Chem. Soc. Jpn. 2021; 94: 309
  • 109 Getlik M, Grütter C, Simard JR, Klüter S, Rabiller M, Rode HB, Robubi A, Rauh D. J. Med. Chem. 2009; 52: 3915
  • 110 Morphy R, Kay C, Rankovic Z. Drug Discovery Today 2004; 9: 641
  • 111 Natarajan A, Guo Y, Harbinski F, Fan Y.-H, Chen H, Luus L, Diercks J, Aktas H, Chorey M, Halperin JA. J. Med. Chem. 2004; 47: 4979
  • 112 Romagnoli R, Baraldi PG, Tabrizi MA, Bermejo J, Estévez F, Borgatti M, Gambari R. J. Med. Chem. 2005; 48: 7906
  • 113 Baraldi PG, Romagnoli R, Guadix AE, Pineda de las Infantas MJ, Gallo MA, Espinosa A, Martinez A, Bingham JP, Hartley JA. J. Med. Chem. 2002; 45: 3630
  • 114 Shrestha AR, Shindo T, Ashida N, Nagamatsu T. Bioorg. Med. Chem. 2008; 16: 8685
  • 115 Kaliappan KP, Ravikumar V. Org. Biomol. Chem. 2005; 3: 848
  • 116 Guillier F, Orain D, Bradley M. Chem. Rev. 2000; 100: 2091
  • 117 Thompson LA, Ellman JA. Chem. Rev. 1996; 96: 555
  • 118 Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O’Donnell JP. Chem. Res. Toxicol. 2002; 15: 269
  • 119 Horne WS, Yadav MK, Stout CD, Ghadiri MR. J. Am. Chem. Soc. 2004; 126: 15366
  • 120 Alvarez R, Velazquez S, San-Felix A, Aquaro S, De Clercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ. J. Med. Chem. 1994; 37: 4185
  • 121 Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J, Reischer RJ, Ford CW, Zurenko GE, Hamel CJ, Schaadt RD, Stapert D, Yagi BH. J. Med. Chem. 2000; 43: 953
  • 122 Brockunier LL, Parmee ER, Ok HO, Candelore MR, Cascieri MA, Colwell LF. Jr, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Tota L, Wyvratt MJ, Fisher MH, Weber AE. Bioorg. Med. Chem. Lett. 2000; 10: 2111
  • 123 Buckle DR, Rockell CJ. M, Smith H, Spicer BA. J. Med. Chem. 1984; 27: 223
  • 124 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 125 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 126 1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]imidazolidine-2,4-dione (119, R = Bn): Typical Procedure1-Propargylhydantoin (64; 0.3 g) was dissolved in 1:1 PEG–H2O. To this solution were added BnN3 (0.29 g), CuSO4·5H2O (0.02 g), and sodium ascorbate (0.04 g) in one portion, and the mixture was stirred for 3 h at rt until the reaction was complete (TLC). The mixture was then diluted with H2O and extracted with EtOAc (3 × 10 mL). The organic layer was washed with H2O (2 × 10 mL). Evaporation of the solvent in a rotary evaporator gave a white crystalline solid; yield: 490 mg (84%); mp 214–216 °C.
  • 127 119 (R = Bn): IR (KBr): 3134, 3039, 2749, 172662, 1726, 1469, 1322, 1230 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 3.9 (s, 2 H, CH2), 3.4.49 (s, 2 H, CH2), 5.56 (s, 2 H, CH2), 7.29–7.39 (m, 5 H, ArH), 8.14 (s, 1 H, CH), 10.83 (s, 1 H, NH). 13C NMR (100 MHz, DMSO-d 6): δ = 37.2, 50.7, 53.0, 123.5, 128.0, 128.2, 128.8, 136.1, 142.9, 156.9, 171.7. TOF-MS (ESI): m/z = 272.1 [M + H]+.
  • 128 Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
  • 129 Shankar BB, Yang DY, Girton S, Ganguly AK. Tetrahedron Lett. 1998; 39: 2447
  • 130 Sammelson RE, Ma T, Galietta LJ. V, Verkman AS, Kurth MJ. Bioorg. Med. Chem. Lett. 2003; 13: 2509
  • 131 Bal G, Van der Venken P, Antonov D, Lambeir A.-M, Grellier P, Croft SL, Augustyns K, Haemers A. Bioorg. Med. Chem. Lett. 2003; 13: 2875
  • 132 Park K.-H, Kurth MJ. J. Org. Chem. 2000; 65: 3520
  • 133 1-[(3-Phenyl-4,5-dihydroisoxazol-5-yl)methyl]hydantoin (120, R = Ph)N-tert-Butyl-N-chlorocyanamide (0.55 g, 4.1 mmol) was added dropwise to a solution of benzaldoxime (0.5 g, 4.1 mmol) in CH2Cl2 (10 mL) at rt. Initially, a blue color appeared that immediately turned to yellow, indicating the formation of benzalhydroximoyl chloride, as confirmed by TLC. To this mixture was added a solution of 1-allylhydantoin (0.57 g) (4.1 mmol) in CH2Cl2 (5 mL), followed by Et3N (0.62 g, 6.1 mmol) in CH2Cl2 (5 mL). The exothermic reaction that occurred was sufficient to induce cycloaddition of the nitrile oxide formed during the reaction to the 1-allylhydantoin. The reaction was complete in 10 min (TLC). The mixture was diluted with CH2Cl2 (20 mL) and then washed with H2O (3 × 50 mL). The filtrate was dried (Na2SO4) and the solvent was evaporated in a rotary evaporator. The resulting viscous liquid was triturated with Et2O to give a white crystalline solid; yield: 600 mg (60%); mp 166–170 °C.
  • 134 Kumar V, Kaushik MP. Tetrahedron Lett. 2006; 47: 1457
  • 135 120 (R = Ph): IR (KBr): 3203, 2929, 1756, 1713, 1469, 1359, 1233 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.15–3.23 (dd, J = 7.6, 7.6 Hz, 2 H, CH2), 3.44–3.72 (m, 2 H, CH2), 4.10–4.22 (q , J = 18 Hz, 2 H, CH2), 4.92–4.98 (m, 1 H, OCH), 7.38–7.66 (m, 5 H, ArH), 8.46 (s, 1 H, NH). 13C NMR (100 MHz, acetone-d 6): δ = 38.3, 46.4, 53.2, 80.7, 127.5, 129.6, 130.6, 130.9, 157.8, 158.3, 172.2. TOF-MS (ESI): m/z = 260.4 [M + H]+.
  • 136 VanWagenen BC, Larsen R, Cardellina JH. II, Randazzo D, Lidert ZC, Swithenbank C. J. Org. Chem. 1993; 58: 335
  • 137 Carreiras MC, Marco JL. Curr. Pharm. Des. 2004; 10: 3167
  • 138 O’Neill MF. Drug Discovery Today 2005; 10: 1333
  • 139 Dimethyl (3-Methyl-2,5-dioxoimidazolidin-1-yl)phosphonate (121; R = Me)1-Methylhydantoin (1 g, 8.77 mmol) was dissolved in anhyd THF (25 mL). To this solution, was added a 60% oil suspension of NaH (0.3 g) in three portions at 0 °C. The mixture was stirred for 0 °C for 1 h, refluxed for 2 h, and then cooled to 0 °C. A solution of dimethyl chlorophosphate (1.6 g) in anhyd THF (10 mL) was added and the mixture was stirred for 4 h at 0 °C until the reaction was complete (TLC). The mixture was filtered and the solvent was evaporated to one-fourth of its original volume. Et2O (30 mL) was added, and a viscous yellow oily liquid settled out as impurities after 20 min. The solution was decanted and kept for 2 h in a refrigerator to give white crystals; yield: 1700 mg (88%); mp 214–216 °C.
  • 140 The 1H NMR spectrum for 121 (R = Me) showed a singlet at δ = 2.92 for N–CH3 and a singlet at δ = 3.94 for –CH2. The two methyl groups attached to the phosphorus atom appeared as a doublet (J PH = 11 Hz) at δ = 3.92. The 13C NMR peaks for the N–CH3, OCH3, –NCH2–, C=O (C-2), and C=O (C-4) groups appeared at δ = 29.5, 52.3–52.4, 55.60, 153.9–154.0, and 168.5 respectively. The 31P-decoupled NMR showed a singlet at δ = –6.44.