CC BY-NC-ND 4.0 · Synthesis 2021; 53(15): 2583-2593
DOI: 10.1055/a-1458-2419
short review

Molecular Editing of Flavins for Catalysis

Andreas Rehpenn
,
Alexandra Walter
,
The Fonds der Chemischen Industrie (FCI, Ph.D. Fellowship to A.W. and Liebig Fellowship to G.S.) is gratefully acknowledged. Our group is supported by the Technische Universität München through the Junior Fellow Programme.


Abstract

The diverse activity of flavoenzymes in organic transformations has fascinated researchers for a long time. However, when applied outside an enzyme environment, the isolated flavin cofactor only shows largely reduced activity. This highlights the importance of embedding the reactive isoalloxazine core of flavins in defined surroundings. The latter include crucial non-covalent interactions with amino acid side chains or backbone as well as controlled access to reactants such as molecular oxygen. Nevertheless, molecular flavins are increasingly applied in the organic laboratory as valuable organocatalysts. Chemical modification of the parent isoalloxazine structure is of particular interest in this context in order to achieve reactivity and selectivity in transformations, which are so far only known with flavoenzymes or even unprecedented. This review aims to give a systematic overview of the reported designed flavin catalysts and highlights the impact of each structural alteration. It is intended to serve as a source of information when comparing the performance of known catalysts, but also when designing new flavins. Over the last few decades, molecular flavin catalysis has emerged from proof-of-concept reactions to increasingly sophisticated transformations. This stimulates anticipating new flavin catalyst designs for solving contemporary challenges in organic synthesis.

1 Introduction

2 N1-Modification

3 N3-Modification

4 N5-Modification

5 C6–C9-Modification

6 N10-Modification

7 Conclusion



Publication History

Received: 14 February 2021

Accepted after revision: 22 March 2021

Publication Date:
22 March 2021 (online)

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 The human flavoproteome as an example: Lienhart W.-D, Gudipati V, Macheroux P. Arch. Biochem. Biophys. 2013; 535: 150
    • 2a Neims AH, Hellerman L. Annu. Rev. Biochem. 1970; 39: 867
    • 2b Fraaije MW, Mattevi A. Trends Biochem. Sci. 2000; 25: 126
    • 2c Bornemann S. Nat. Prod. Rep. 2002; 19: 761
    • 2d Mansoorabadi SO, Thibodeaux CJ, Liu H.-w. J. Org. Chem. 2007; 72: 6329
    • 2e Toogood HS, Gardiner JM, Scrutton NS. ChemCatChem 2010; 2: 892
    • 2f Walsh CT, Wencewicz TA. Nat. Prod. Rep. 2013; 30: 175
  • 3 Starbird CA, Maklashina E, Cecchini G, Iverson T. Flavoenzymes: Covalent versus Noncovalent in eLS [Online] . John Wiley & Sons; September 14, 2015
  • 4 Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Chem. Rev. 2018; 118: 1742

    • Representative recent examples for the comparison between flavoenzyme and isolated cofactor:
    • 5a Clayman PD, Hyster TK. J. Am. Chem. Soc. 2020; 142: 15673
    • 5b Huang X, Wang B, Wang Y, Jiang G, Feng J, Zhao H. Nature 2020; 584: 69
    • 5c Sandoval BA, Clayman PD, Oblinsky DG, Oh S, Nakano Y, Bird M, Scholes GD, Hyster TK. J. Am. Chem. Soc. 2021; 143: 1735
    • 6a Imada Y, Naota T. Chem. Rec. 2007; 7: 354
    • 6b Iida H, Imada Y, Murahashi SI. Org. Biomol. Chem. 2015; 13: 7599
    • 6c Cibulka R. Eur. J. Org. Chem. 2015; 915
    • 7a Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
    • 7b König B, Kümmel S, Svobodová E, Cibulka R. Phys. Sci. Rev. 2018; 3: 20170168
  • 8 Li W.-S, Zhang N, Sayre LM. Tetrahedron 2001; 57: 4507
  • 9 Marsh BJ, Carbery DR. Tetrahedron Lett. 2010; 51: 2362
  • 10 Zelenka J, Hartman T, Klímová K, Hampl F, Cibulka R. ChemCatChem 2014; 6: 2843
  • 11 Murray AT, Matton P, Fairhurst NW. G, John MP, Carbery DR. Org. Lett. 2012; 14: 3656
  • 12 Sakai T, Watanabe M, Ohkado R, Arakawa Y, Imada Y, Iida H. ChemSusChem 2019; 12: 1640
    • 13a Žurek J, Cibulka R, Dvořáková H, Svoboda J. Tetrahedron Lett. 2010; 51: 1083
    • 13b Žurek J, Svobodová E, Šturala J, Dvořáková H, Svoboda J, Cibulka R. Tetrahedron: Asymmetry 2017; 28: 1780
  • 14 Poudel PP, Arimitsu K, Yamamoto K. Chem. Commun. 2016; 52: 4163
  • 15 Marsh BJ, Heath EL, Carbery DR. Chem. Commun. 2011; 47: 280
    • 16a Zhu C, Li Q, Pu L, Tan Z, Guo K, Ying H, Ouyang P. ACS Catal. 2016; 6: 4989
    • 16b Tan Z, Zhu C, Fu J, Zhang X, Li M, Zhuang W, Ying H. Angew. Chem. Int. Ed. 2018; 57: 16464
    • 17a Ishikawa T, Kimura M, Kumoi T, Iida H. ACS Catal. 2017; 7: 4986
    • 17b Jiang X, Zhao Z, Shen Z, Chen K, Fang L, Yu C. Eur. J. Org. Chem. 2020; 3889
  • 18 Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Jr. J. Org. Chem. 2020; 85: 9096
  • 19 März M, Babor M, Cibulka R. Eur. J. Org. Chem. 2019; 3264
  • 20 Zelenka J, Svobodová E, Tarábek J, Hoskovcová I, Boguschová V, Bailly S, Sikorski M, Roithová J, Cibulka R. Org. Lett. 2019; 21: 114
  • 21 Tolba AH, Vávra F, Chudoba J, Cibulka R. Eur. J. Org. Chem. 2020; 1579
  • 22 Zelenka J, Cibulka R, Roithová J. Angew. Chem. Int. Ed. 2019; 58: 15412
  • 23 Mojr V, Svobodová E, Straková K, Neveselý T, Chudoba J, Dvořáková H, Cibulka R. Chem. Commun. 2015; 51: 12036
  • 24 Špačková J, Svobodová E, Hartman T, Stibor I, Kopecká J, Cibulková J, Chudoba J, Cibulka R. ChemCatChem 2017; 9: 1177
  • 25 Jirásek M, Straková K, Neveselý T, Svobodová E, Rottnerová Z, Cibulka R. Eur. J. Org. Chem. 2017; 2139
    • 26a Insińska-Rak M, Sikorska E, Bourdelande JL, Khmelinskii IV, Prukała W, Dobek K, Karolczak J, Machado IF, Ferreira LF. V, Dulewicz E, Komasa A, Worrall DR, Kubicki M, Sikorski M. J. Photochem. Photobiol. A 2007; 186: 14
    • 26b Wolnicka-Glubisz A, Pawlak A, Insinska-Rak M, Zadlo A. J. Photochem. Photobiol. B 2020; 205: 111820
  • 27 Tan SL. J, Novianti ML, Webster RD. J. Phys. Chem. B 2015; 119: 14053
  • 28 Cibulka R, Vasold R, König B. Chem. Eur. J. 2004; 10: 6223
  • 29 Metternich JB, Sagebiel S, Lückener A, Lamping S, Ravoo BJ, Gilmour R. Chem. Eur. J. 2018; 24: 4228
  • 30 Imada Y, Osaki M, Noguchi M, Maeda T, Fujiki M, Kawamorita S, Komiya N, Naota T. ChemCatChem 2015; 7: 99
  • 31 Kurfiřt M, Špačková J, Svobodová E, Cibulka R. Monatsh. Chem. 2018; 149: 863
  • 32 Arakawa Y, Yamanomoto K, Kita H, Minagawa K, Tanaka M, Haraguchi N, Itsuno S, Imada Y. Chem. Sci. 2017; 8: 5468
  • 33 Kemal C, Bruice TC. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 995
  • 34 Kemal C, Chan TW, Bruice TC. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 405
    • 35a Arakawa Y, Oonishi T, Kohda T, Minagawa K, Imada Y. ChemSusChem 2016; 9: 2769
    • 35b Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Org. Biomol. Chem. 2018; 16: 3999
  • 36 Ménová P, Eigner V, Čejka J, Dvořáková H, Šanda M, Cibulka R. J. Mol. Struct. 2011; 1004: 178
  • 37 Oonishi T, Kawahara T, Arakawa Y, Minagawa K, Imada Y. Eur. J. Org. Chem. 2019; 1791
  • 38 Sichula V, Kucheryavy P, Khatmullin R, Hu Y, Mirzakulova E, Vyas S, Manzer SF, Hadad CM, Glusac KD. J. Phys. Chem. A 2010; 114: 12138
  • 39 Ball S, Bruice TC. J. Am. Chem. Soc. 1980; 102: 6498
  • 40 Murahashi S.-I, Oda T, Masui Y. J. Am. Chem. Soc. 1989; 111: 5002
    • 41a Imada Y, Ohno T, Naota T. Tetrahedron Lett. 2007; 48: 937
    • 41b Mojr V, Herzig V, Buděšínský M, Cibulka R, Kraus T. Chem. Commun. 2010; 46: 7599
    • 41c Ménová P, Cibulka R. J. Mol. Catal. A: Chem. 2012; 363-364: 362
    • 41d Hartman T, Herzig V, Buděšínský M, Jindřich J, Cibulka R, Kraus T. Tetrahedron: Asymmetry 2012; 23: 1571
    • 41e Imada Y, Kitagawa T, Iwata S, Komiya N, Naota T. Tetrahedron 2014; 70: 495
    • 41f Iida H, Ishikawa T, Nomura K, Murahashi S.-I. Tetrahedron Lett. 2016; 57: 4488
  • 42 Baxová L, Cibulka R, Hampl F. J. Mol. Catal. A: Chem. 2007; 277: 53
  • 43 Iida H, Iwahana S, Mizoguchi T, Yashima E. J. Am. Chem. Soc. 2012; 134: 15103
  • 44 Mazzini C, Lebreton J, Furstoss R. J. Org. Chem. 1996; 61: 8
  • 45 Imada Y, Iida H, Ono S, Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868
    • 46a Imada Y, Iida H, Ono S, Masui Y, Murahashi S.-I. Chem. Asian J. 2006; 1: 136
    • 46b Imada Y, Tonomura I, Komiya N, Naota T. Synlett 2013; 24: 1679
  • 47 Murahashi S.-I, Zhang D, Iida H, Miyawaki T, Uenaka M, Murano K, Meguro K. Chem. Commun. 2014; 50: 10295
  • 48 Imada Y, Kitagawa T, Wang H.-K, Komiya N, Naota T. Tetrahedron Lett. 2013; 54: 621
  • 49 Imada Y, Iida H, Naota T. J. Am. Chem. Soc. 2005; 127: 14544
    • 50a Smit C, Fraaije MW, Minnaard AJ. J. Org. Chem. 2008; 73: 9482
    • 50b Imada Y, Iida H, Kitagawa T, Naota T. Chem. Eur. J. 2011; 17: 5908
  • 51 Imada Y, Iida H, Murahashi SI, Naota T. Angew. Chem. Int. Ed. 2005; 44: 1704
  • 52 Iida H, Demizu R, Ohkado R. J. Org. Chem. 2018; 83: 12291
  • 53 Mirzakulova E, Khatmullin R, Walpita J, Corrigan T, Vargas-Barbosa NM, Vyas S, Oottikkal S, Manzer SF, Hadad CM, Glusac KD. Nat. Chem. 2012; 4: 794
  • 54 Pouy MJ, Milczek EM, Figg TM, Otten BM, Prince BM, Gunnoe TB, Cundari TR, Groves JT. J. Am. Chem. Soc. 2012; 134: 12920
    • 55a Bergstad K, Bäckvall J.-E. J. Org. Chem. 1998; 63: 6650
    • 55b Lindén AA, Krüger L, Bäckvall J.-E. J. Org. Chem. 2003; 68: 5890
    • 55c Lindén AA, Hermanns N, Ott S, Krüger L, Bäckvall J.-E. Chem. Eur. J. 2005; 11: 112
    • 55d Lindén AA, Johansson M, Hermanns N, Bäckvall J.-E. J. Org. Chem. 2006; 71: 3849
    • 56a Bergstad K, Jonsson SY, Bäckvall J.-E. J. Am. Chem. Soc. 1999; 121: 10424
    • 56b Jonsson SY, Adolfsson H, Bäckvall J.-E. Org. Lett. 2001; 3: 3463
  • 57 Minidis AB. E, Bäckvall J.-E. Chem. Eur. J. 2001; 7: 297
    • 58a Chen S, Hossain MS, Foss FW. Org. Lett. 2012; 14: 2806
    • 58b Chen S, Foss FW. Org. Lett. 2012; 14: 5150
  • 59 Hartman T, Cibulka R. Org. Lett. 2016; 18: 3710
  • 60 Chen S, Hossain MS, Foss FW. ACS Sustainable Chem. Eng. 2013; 1: 1045
    • 61a Ohkado R, Ishikawa T, Iida H. Green Chem. 2018; 20: 984
    • 61b Tanimoto K, Ohkado R, Iida H. J. Org. Chem. 2019; 84: 14980
    • 61c Okai H, Tanimoto K, Ohkado R, Iida H. Org. Lett. 2020; 22: 8002
  • 62 Greening C, Ahmed FH, Mohamed AE, Lee BM, Pandey G, Warden AC, Scott C, Oakeshott JG, Taylor MC, Jackson CJ. Microbiol. Mol. Biol. Rev. 2016; 80: 451
    • 63a Hemmerich P, Massey V. FEBS Lett. 1977; 84: 5
    • 63b Link PA. J, Plas HC. V. D, Müller F. Photochem. Photobiol. 1987; 45: 557
    • 63c Yanada R, Yoneda Y, Yazaki M, Mimura N, Taga T, Yoneda F, Yanada K. Tetrahedron: Asymmetry 1997; 8: 2319
  • 64 Mojr V, Pitrová G, Straková K, Prukała D, Brazevic S, Svobodová E, Hoskovcová I, Burdziński G, Slanina T, Sikorski M, Cibulka R. ChemCatChem 2018; 10: 849
  • 65 Graml A, Neveselý T, Kutta RJ, Cibulka R, König B. Nat. Commun. 2020; 11: 3174
  • 66 Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
  • 67 Legrand Y.-M, Gray M, Cooke G, Rotello VM. J. Am. Chem. Soc. 2003; 125: 15789
  • 68 Pavlishchuk VV, Addison AW. Inorg. Chim. Acta 2000; 298: 97
  • 69 Korvinson KA, Hargenrader GN, Stevanovic J, Xie Y, Joseph J, Maslak V, Hadad CM, Glusac KD. J. Phys. Chem. A 2016; 120: 7294
  • 70 Dang C, Zhu L, Guo H, Xia H, Zhao J, Dick B. ACS Sustainable Chem. Eng. 2018; 6: 15254
  • 71 Akiyama T, Simeno F, Murakami M, Yoneda F. J. Am. Chem. Soc. 1992; 114: 6613
    • 72a Yano Y, Mitsui K, Ohsawa Y, Kobayashi T, Nabeshima T. J. Chem. Soc., Chem. Commun. 1993; 1719
    • 72b Ohshiro H, Mitsui K, Ando N, Ohsawa Y, Koinuma W, Takahashi H, Kondo S.-i, Nabeshima T, Yano Y. J. Am. Chem. Soc. 2001; 123: 2478
    • 73a Shinkai S, Nakao H, Ueda K, Manabe O. Tetrahedron Lett. 1984; 25: 5295
    • 73b Shinkai S, Ishikawa Y, Shinkai H, Tsuno T, Makishima H, Ueda K, Manabe O. J. Am. Chem. Soc. 1984; 106: 1801
  • 74 Walter A, Storch G. Angew. Chem. Int. Ed. 2020; 59: 22505
  • 75 Kawamorita S, Fujiki M, Li Z, Kitagawa T, Imada Y, Naota T. ChemCatChem 2019; 11: 878
  • 76 Murahashi S.-I, Ono S, Imada Y. Angew. Chem. Int. Ed. 2002; 41: 2366
  • 77 Jurok R, Cibulka R, Dvořáková H, Hampl F, Hodačová J. Eur. J. Org. Chem. 2010; 5217
  • 78 Jurok R, Hodačová J, Eigner V, Dvořáková H, Setnička V, Cibulka R. Eur. J. Org. Chem. 2013; 7724
    • 79a Shinkai S, Yamaguchi T, Kawase A, Kitamura A, Manabe O. J. Chem. Soc., Chem. Commun. 1987; 1506
    • 79b Shinkai S, Yamaguchi T, Manabe O, Toda F. J. Chem. Soc., Chem. Commun. 1988; 1399
  • 80 Svoboda J, Schmaderer H, König B. Chem. Eur. J. 2008; 14: 1854
  • 81 Daďová J, Kümmel S, Feldmeier C, Cibulková J, Pažout R, Maixner J, Gschwind RM, König B, Cibulka R. Chem. Eur. J. 2013; 19: 1066
  • 82 Tagami T, Arakawa Y, Minagawa K, Imada Y. Org. Lett. 2019; 21: 6978