Synthesis 2021; 53(14): 2395-2407
DOI: 10.1055/a-1389-1281
short review

Recent Advances in the Generation of Nitrilium Betaine 1,3-Dipoles

Keith Livingstone
,
Gemma Little
,
We gratefully acknowledge support from the University of Strathclyde (studentship to G.L.) and the EPSRC for funding via Prosperity Partnership EP/S035990/1.


Abstract

Nitrilium betaine 1,3-dipoles are ubiquitous reagents in organic chemistry, with applications ranging from natural product synthesis to materials science. Given the high reactivity of these zwitterionic motifs, they are invariably generated in situ from a suitable precursor, prior to use. This short review summarises the recent progress in the development of modern approaches towards the formation of these 1,3-dipoles, and their applications within a diverse range of fields.

1 Introduction

2 Nitrile Ylides

2.1 2H-Azirine Rearrangement

2.2 Addition of Nitriles to Carbenes

3 Nitrile Imines

3.1 2,5-Tetrazole Thermolysis

3.2 2,5-Tetrazole Photolysis

3.3 Diaryl Sydnone Photolysis

4 Nitrile Oxides

4.1 Hypervalent Iodine

4.2 The Nitroso Radical

4.3 Green Chemistry Approaches

4.4 Other Approaches

5 Conclusions



Publication History

Received: 21 December 2020

Accepted after revision: 11 February 2021

Accepted Manuscript online:
11 February 2021

Article published online:
10 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Current address: Organisch Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
    • 2a Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
    • 2b Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 633
    • 2c Padwa A. Angew. Chem., Int. Ed. Engl. 1976; 15: 123
    • 2d 1,3-Dipolar Cycloaddition Chemistry . Padwa A. Wiley; New York: 1984
    • 2e Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 2f Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
    • 3a Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med. Res. Rev. 2007; 28: 278
    • 3b Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
    • 3c Jiang X, Hao X, Jing L, Wu G, Kang D, Liu X, Yhan P. Expert Opin. Drug Discovery 2019; 14: 779
    • 4a Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. In Chemistry of Heterocyclic Compounds, Vol. 59. Padwa A, Pearson WH. Wiley; Hoboken: 2002
    • 4b Padwa A, Bur S. Adv. Heterocycl. Chem. 2016; 119: 241
    • 4c Padwa A. ARKIVOC 2018; (iv): 23
    • 5a Amblard F, Cho JH, Schinazi RF. Chem. Rev. 2009; 109: 4207
    • 5b Meyer J.-P, Adumeau P, Lewis JS, Zeglis BM. Bioconjugate Chem. 2016; 27: 2791
    • 5c Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren C, Heath JR. Chem. Rev. 2019; 119: 9950
    • 6a Delaittre G, Guimard NK, Barner-Kowollik C. Acc. Chem. Res. 2015; 48: 1296
    • 6b Castro V, Rodríguez H, Albericio F. ACS Comb. Sci. 2016; 18: 1
    • 6c Takata T, Koyama Y, Sogawa H. RSC Polym. Chem. Ser. 2018; 30: 122
    • 7a Nguyen MT, Malone S, Hegarty AF, Williams II. J. Org. Chem. 1991; 56: 3683
    • 7b Zhang C, Seidel D. J. Am. Chem. Soc. 2010; 132: 1798
    • 7c Banert K, Pester T. Angew. Chem. Int. Ed. 2020; 59: 12315
    • 7d Livingstone K, Bertrand S, Kennedy AR, Jamieson C. Chem. Eur. J. 2020; 26: 10591
  • 8 Escolano C, Duque MD, Vazquez S. Curr. Org. Chem. 2007; 11: 741
    • 9a Bertrand G, Wentrup C. Angew. Chem., Int. Ed. Engl. 1994; 33: 527
    • 9b Jamieson C, Livingstone K. The Nitrile Imine 1,3-Dipole: Properties, Reactivity and Applications . Springer International; Switzerland: 2020
    • 10a Grundmann C. Fortschr. Chem. Forsch. 1966; 7: 62
    • 10b Belen’kii LI. In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis, 2nd ed. Feuer H. Wiley; Hoboken: 2008: 1-127
    • 11a Kiyoshi T, Hiroki D, Keiryo M. Chem. Lett. 1983; 12: 1463
    • 11b Tian W.-S, Livinghouse T. J. Chem. Soc., Chem. Commun. 1989; 819
    • 11c Yoo CL, Olmstead MM, Tantillo DJ, Kurth MJ. Tetrahedron Lett. 2006; 47: 477
    • 11d Melša P, Čajan M, Havlas Z, Mazal C. J. Org. Chem. 2008; 73: 3032
    • 11e Sibi MP, Soeta T, Jasperse CP. Org. Lett. 2009; 11: 5366
    • 12a Sustmann R. Tetrahedron Lett. 1971; 12: 2717
    • 12b Sustmann R. Pure Appl. Chem. 1974; 40: 569
    • 13a Padwa A, Carlsen PH. J. J. Am. Chem. Soc. 1975; 97: 3862
    • 13b Padwa A, Carlsen PH. J. J. Org. Chem. 1976; 41: 180
  • 14 Bunge K, Huisgen R, Raab R. Chem. Ber. 1972; 105: 1296
    • 15a Huisgen R, Stangl H, Sturm HJ, Wagenhofer H. Angew. Chem., Int. Ed. Engl. 1962; 1: 50
    • 15b Huisgen R, Stangl H, Sturm HJ, Raab R, Bunge K. Chem. Ber. 1972; 105: 1258
    • 16a Padwa A, Smolanoff J. J. Am. Chem. Soc. 1971; 93: 548
    • 16b Giezendanner H, Märky M, Jackson B, Hansen H.-J, Schmid H. Helv. Chim. Acta 1972; 55: 745
    • 16c Gakis N, Märky M, Hansen H.-J, Schmid H. Helv. Chim. Acta 1972; 55: 748
  • 17 Wendling LA, Bergman RG. J. Org. Chem. 1976; 41: 831
  • 18 Naito I, Morihara H, Ishida A, Takamuku S, Isomura K, Taniguchi H. Bull. Chem. Soc. Jpn. 1991; 64: 2757
    • 19a Bornemann C, Klessinger M. Chem. Phys. 2000; 259: 263
    • 19b Inui H, Murata S. Chem. Lett. 2001; 30: 832
  • 20 Lui Y, Guan P, Wang Y, Liu L, Cao J. J. Phys. Chem. A 2015; 119: 67
  • 21 Inui H, Murata S. J. Am. Chem. Soc. 2005; 127: 2628
  • 22 Cludius-Brandt S, Kupracz L, Kirschning A. Beilstein J. Org. Chem. 2013; 9: 1745
    • 23a Doyle MP, McKervey MA, Tao Y. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. Wiley; New York: 1998
    • 23b Dörwald FZ. Metal Carbenes in Organic Synthesis . Wiley-VCH; Weinheim: 1999
  • 24 Kende AS, Hebeisen P, Sanfilippo PJ, Toder BH. J. Am. Chem. Soc. 1982; 104: 4244
    • 25a Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Foken VF. J. Am. Chem. Soc. 2008; 130: 14972
    • 25b Austeri M, Rix D, Zeghida W, Lacour J. Org. Lett. 2011; 13: 1394
    • 25c Bendedouche CK, Benhaoua H. J. Chem. Res. 2012; 36: 149
    • 25d Billedeau RJ, Klein KR, Kaplan D, Lou Y. Org. Lett. 2013; 15: 1421
    • 25e Loy NS. Y, Choi S, Kim S, Park C.-M. Chem. Commun. 2016; 52: 7336
  • 26 Karad SN, Liu R.-S. Angew. Chem. Int. Ed. 2014; 53: 5444
  • 27 Cai A.-J, Zheng Y, Ma J.-A. Chem. Commun. 2015; 51: 8946
  • 28 Chen J, Shao Y, Ma L, Ma M, Wan X. Org. Biomol. Chem. 2016; 14: 10723
  • 29 Li H, Wu X, Hao W, Li H, Zhao Y, Wang Y, Lian P, Zheng Y, Bao X, Wan X. Org. Lett. 2018; 20: 5224
    • 30a Wong MW, Wentrup C. J. Am. Chem. Soc. 1993; 115: 7743
    • 30b Fauré J.-L, Réau R, Wong MW, Koch R, Wentrup C, Bertrand G. J. Am. Chem. Soc. 1997; 119: 2819
    • 30c Bégué D, Qiao GG, Wentrup C. J. Am. Chem. Soc. 2012; 134: 5339
  • 31 Houk KN, Sims J, Watts CR, Luskus LJ. J. Am. Chem. Soc. 1973; 95: 7301
  • 32 Huisgen R, Sauer J, Seidel M. Chem. Ber. 1961; 94: 2503

    • For recent examples, see:
    • 33a Smedley CJ, Li G, Barrow AS, Gialelis TL, Giel M.-C, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 12460
    • 33b Ledovskaya MS, Voronin VV, Polynski MV, Lebedev AN, Ananikov VP. Eur. J. Org. Chem. 2020; 4571
    • 33c Su Y, Ma C, Zhao Y, Yang C, Feng Y, Wang K.-H, Huang D, Huo C, Hu Y. Tetrahedron 2020; 76: 131355
    • 33d Yavari I, Khaledian O. Synthesis 2020; 52: 1379
    • 33e Su Y, Zhao Y, Chang B, Zhao X, Zhang R, Liu X, Huang D, Wang K.-H, Huo C, Hu Y. J. Org. Chem. 2019; 84: 6719
    • 33f Sharma P, Bhat SV, Prabhath MR. R, Molino A, Nauha E, Wilson DJ. D, Moses JE. Org. Lett. 2018; 20: 4263
    • 33g Yavari I, Taheri Z, Naeimabadi M, Bahemmat S, Halvagar MR. Synlett 2018; 29: 918
    • 33h Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
  • 34 Huisgen R, Seidel M, Sauer J, McFarland J, Wallbillich G. J. Org. Chem. 1959; 24: 892
    • 35a Baldwin JE, Hong SY. Chem. Commun. 1967; 1136a
    • 35b Baldwin JE, Hong SY. Tetrahedron 1968; 24: 3787
  • 36 Miura T, Hagiwara K, Nakamuro T, Nagata Y, Oku N, Murakami M. Chem. Lett. 2021; 50: 131
  • 37 Clovis J, Eckell A, Huisgen R, Sustmann R. Chem. Ber. 1967; 100: 60
    • 38a Blasco E, Sugawara Y, Lederhose P, Blinco JP, Kelterer A.-M, Barner-Kowollik C. ChemPhotoChem 2017; 1: 159
    • 38b Menzel JP, Noble BB, Lauer A, Coote ML, Blinco JP, Barner-Kowollik C. J. Am. Chem. Soc. 2017; 139: 15812
  • 39 Song W, Wang Y, Qu J, Madden MM, Lin Q. Angew. Chem. Int. Ed. 2008; 47: 2832
    • 40a Song W, Wang Y, Qu J, Lin Q. J. Am. Chem. Soc. 2008; 130: 9654
    • 40b Song W, Wang Y, Yu Z, Rivera Vera CI, Qu J, Lin Q. ACS Chem. Biol. 2010; 5: 875
    • 40c Yu Z, Pan Y, Wang Z, Wang J, Lin Q. Angew. Chem. Int. Ed. 2012; 51: 10600
    • 40d Kamber DN, Nazarova LA, Liang Y, Lopez SA, Patterson DM, Shih H.-W, Houk KN, Prescher JA. J. Am. Chem. Soc. 2013; 135: 13680
    • 41a Madden MM, Rivera Vera CI, Song W, Lin Q. Chem. Commun. 2009; 5588
    • 41b Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q. Bioorg. Med. Chem. Lett. 2011; 21: 1472
    • 42a An P, Lewandowski TM, Lin Q. ChemBioChem 2018; 19: 1326
    • 42b Kulkarni RA, Briney CA, Crooks DR, Bergholtz SE, Mushti C, Lockett SJ, Lane AN, Fan TW.-M, Swenson RE, Linehan WM, Meier JL. ChemBioChem 2019; 20: 360
    • 44a Li Z, Qian L, Li L, Bernhammer JC, Huynh HV, Lee J.-S, Yao SQ. Angew. Chem. Int. Ed. 2016; 55: 2002
    • 44b Herner A, Marjanovic J, Lewandowski TM, Marin V, Patterson M, Miesbauer L, Ready D, Williams J, Vasudevan A, Lin Q. J. Am. Chem. Soc. 2016; 138: 14609
    • 44c Cheng K, Lee J.-S, Hao P, Yao SQ, Ding K, Li Z. Angew. Chem. Int. Ed. 2017; 56: 15044
  • 45 Delaittre G, Goldmann AS, Mueller JO, Barner-Kowollik C. Angew. Chem. Int. Ed. 2015; 54: 11388
    • 46a Darkow R, Yoshikawa M, Kitao T, Tomaschewski G, Schellenberg J. J. Polym. Sci. A, Polym. Chem. 1994; 32: 1657
    • 46b Dürr CJ, Lederhose P, Hlalele L, Abt D, Kaiser A, Brandau S, Barner-Kowollik C. Macromolecules 2013; 46: 5915
    • 46c Mueller JO, Voll D, Schmidt FG, Delaittre G, Barner-Kowollik C. Chem. Commun. 2014; 50: 15681
    • 46d Mueller JO, Guimard NK, Oehlenschlaeger KK, Schmidt FG, Barner-Kowollik C. Polym. Chem. 2014; 5: 1447
    • 46e Hiltebrandt K, Pauloehrl T, Blinco JP, Linkert K, Börner HG, Barner-Kowollik C. Angew. Chem. Int. Ed. 2015; 54: 2838
    • 46f Hufendiek A, Carlmark A, Meier MA. R, Barner-Kowollik C. ACS Macro Lett. 2016; 5: 139
    • 46g Estupiñán D, Barner-Kowollik C, Barner L. Angew. Chem. Int. Ed. 2018; 57: 5925
    • 47a Dietrich M, Delaittre G, Blinco JP, Inglis AJ, Bruns M, Barner-Kowollik C. Adv. Funct. Mater. 2012; 22: 304
    • 47b Blasco E, Piñol M, Oriol L, Schmidt BV. K. J, Welle A, Trouillet V, Bruns M, Barner-Kowollik C. Adv. Funct. Mater. 2013; 23: 4011
    • 47c Rodriguez-Emmenegger C, Preuss CM, Yameen B, Pop-Georgievski O, Bachmann M, Mueller JO, Bruns M, Goldmann AS, Bastmeyer M, Barner-Kowollik C. Adv. Mater. 2013; 25: 6123
    • 47d Tischer T, Rodriguez-Emmenegger C, Trouillet V, Welle A, Schueler V, Mueller JO, Goldmann AS, Brynda E, Barner-Kowollik C. Adv. Mater. 2014; 26: 4087
    • 47e Hufendiek A, Barner-Kowollik C, Meier MA. R. Polym. Chem. 2015; 6: 2188
    • 47f Vonhören B, Roling O, Buten C, Körsgen M, Arlinghaus HF, Ravoo BJ. Langmuir 2016; 32: 2277
    • 47g Buten C, Lamping S, Körsgen M, Arlinghaus HF, Jamieson C, Ravoo BJ. Langmuir 2018; 34: 2132
    • 47h Delafresnaye L, Zaquen N, Kuchel RN, Blinco JP, Zetterlund PB, Barner-Kowollik C. Adv. Funct. Mater. 2018; 28: 1800342
  • 48 Livingstone K, Bertrand S, Mowat J, Jamieson C. Chem. Sci. 2019; 10: 10412
  • 49 Green L, Livingstone K, Bertrand S, Peace S, Jamieson C. Chem. Eur. J. 2020; 26: 14866
    • 50a Wang Y, Hu WJ, Song W, Lim RK. V, Lin Q. Org. Lett. 2008; 10: 3725
    • 50b Yu Z, Ho L, Wang Z, Lin Q. Bioorg. Med. Chem. Lett. 2011; 21: 5033
    • 50c An P, Yu Z, Lin Q. Chem. Commun. 2013; 49: 9920
    • 50d An P, Yu Z, Lin Q. Org. Lett. 2013; 15: 5496
    • 50e Yu Z, Ohulchankyy TY, An P, Prasad PN, Lin Q. J. Am. Chem. Soc. 2013; 135: 16766
    • 51a Lederhose P, Wüst KN. R, Barner-Kowollik C, Blinco JP. Chem. Commun. 2016; 52: 5928
    • 51b Lederhose P, Chen Z, Müller R, Blinco JP, Wu S, Barner-Kowollik C. Angew. Chem. Int. Ed. 2016; 55: 12195
    • 52a Stewart FH. C. Chem. Rev. 1964; 64: 129
    • 52b Kuo C.-N, Wang S.-P, Yeh M.-Y, Tien H.-J. J. Chin. Chem. Soc. 1992; 39: 641
    • 52c Browne DL, Harrity JP. A. Tetrahedron 2010; 66: 553
    • 52d Cherepanov IA, Moiseev SK. Adv. Heterocycl. Chem. 2020; 131: 49
    • 52e Porte K, Riomet M, Figliola C, Audisio D, Taran F. Chem. Rev. 2021; in press DOI: 10.1021/acs.chemrev.0c00806.
    • 53a Decuypére E, Plougastel L, Audisio D, Taran F. Chem. Commun. 2017; 53: 11515
    • 53b Hladíková V, Váňa J, Hanusek J. Beilstein J. Org. Chem. 2018; 14: 1317
  • 54 Krauch C, Kuhls J, Piek H. Tetrahedron Lett. 1966; 7: 4043
    • 55a Chinone A, Huseya Y, Ohta M. Bull. Chem. Soc. Jpn. 1970; 43: 2650
    • 55b Huseya Y, Chinone A, Ohta M. Bull. Chem. Soc. Jpn. 1971; 44: 1667
    • 55c Angadiyavar CS, George MV. J. Org. Chem. 1971; 36: 1589
    • 55d Gotthardt H, Reiter F. Tetrahedron Lett. 1971; 12: 2749
    • 55e Märky M, Hansen H, Schmid H. Helv. Chim. Acta 1971; 54: 1275
    • 56a Zhang L, Zhang X, Yao Z, Jiang S, Deng J, Li B, Yu Z. J. Am. Chem. Soc. 2018; 140: 7390
    • 56b Zhang X, Wu X, Jiang S, Gao J, Yao Z, Deng J, Zhang L, Yu Z. Chem. Commun. 2019; 55: 7187
    • 56c Deng J, Wu X, Guo G, Zhao X, Yu Z. Org. Biomol. Chem. 2020; 18: 5602
    • 57a Kaji E, Harada K, Zen S. Chem. Pharm. Bull. 1978; 26: 3254
    • 57b Roscales S, Plumet J. Org. Biomol. Chem. 2018; 16: 8446
    • 57c Plumet J. ChemPlusChem 2020; 85: 2252
  • 58 Mandal D. Pericyclic Chemistry . Elsevier; Amsterdam: 2018
    • 59a Paton RM. Comprehensive Heterocyclic Chemistry, Vols. 6–7. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 393
    • 59b Yu Z, Caramella P, Houk KN. J. Am. Chem. Soc. 2003; 125: 15420
    • 59c Pasinszki T, Hajgató B, Havasi B, Westwood NP. C. Phys. Chem. Chem. Phys. 2009; 11: 5263
    • 60a Grundmann C, Dean JM. J. Org. Chem. 1965; 30: 2809
    • 60b Krayushkin MM, Loktionov AA, Belenkii LI. Chem. Heterocycl. Compd. 1988; 24: 850
    • 61a Sicard G, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1988; 110: 2663
    • 61b Granier M, Baceiredo A, Bertrand G. Angew. Chem., Int. Ed. Engl. 1988; 27: 1350
    • 61c Castan F, Baceiredo A, Bertrand G. Angew. Chem., Int. Ed. Engl. 1989; 28: 1250
    • 61d Granier M, Baceiredo A, Dartiguenave M, Menu M.-J, Bertrand G. J. Am. Chem. Soc. 1990; 112: 6277
    • 61e Granier M, Baceiredo A, Huch V, Veith M, Bertrand G. Inorg. Chem. 1991; 30: 1161
    • 61f Arthur M, Goodwin H, Baceiredo A, Dillon KB, Bertrand G. Organometallics 1991; 10: 3205
    • 61g Réau R, Veneziani G, Dahan F, Bertrand G. Angew. Chem., Int. Ed. Engl. 1992; 31: 439
    • 61h Réau R, Veneziani G, Bertrand G. J. Am. Chem. Soc. 1992; 114: 6059
    • 61i Leue C, Réau R, Neumann B, Stammler H.-G, Jutzi P, Bertrand G. Organometallics 1994; 13: 436
    • 61j Dubau N, Arthur M.-P, Dahan F, Baceiredo A, Bertrand G. Organometallics 1994; 13: 2913
    • 61k Emig N, Gabbaï FP, Krautscheid H, Réau R, Bertrand G. Angew. Chem. Int. Ed. 1998; 37: 989

      For early reviews, see
    • 62a Grundmann C. In Houben-Weyl, 4th ed., Vol. X/3. Müller E. Georg Thieme; Stuttgart: 1965
    • 62b Grundmann C, Grünanger P. The Nitrile Oxides . In Organische Chemie in Einzeldarstellungen, Vol 13. Springer; Berlin: 1991
    • 63a Christl M, Huisgen R. Chem. Ber. 1973; 106: 3345

    • For early examples, see:
    • 63b Grundmann C, Dean JM. Angew. Chem., Int. Ed. Engl. 1964; 3: 585
    • 63c Abramovitch RA, Saha JG. Adv. Heterocycl. Chem. 1966; 6: 229
    • 63d Grundmann C, Richter R. J. Org. Chem. 1968; 33: 476

    • For significant advances, see:
    • 63e Liu K, Shelton BR, Howe RK. J. Org. Chem. 1980; 45: 3916
    • 63f Lee GA. Synthesis 1982; 508
    • 63g Larsen KE, Torsell KB. G. Tetrahedron 1984; 40: 2985
    • 63h Corbett DF. J. Chem. Soc., Perkin Trans. 1 1986; 421
    • 63i Kim J, Ryu E. Synth. Commun. 1990; 20: 1373
    • 63j Jäger V, Colinas PA. Chem. Heterocycl. Compd. 2002; 59: 361
    • 63k Ye Y, Zheng Y, Xu G.-Y, Liu L.-Z. Heteroat. Chem. 2003; 14: 254
    • 63l Kumar V, Kaushik MP. Tetrahedron Lett. 2006; 47: 1457

    • For recent examples, see:
    • 63m Ledovskaya MS, Rodygina KS, Ananikov VP. Org. Chem. Front. 2018; 5: 226
    • 63n Uceta H, Vizuete M, Carrillo JR, Barrejón M, Fierro JL. G, Prieto MP, Langa F. Chem. Eur. J. 2019; 25: 14644
    • 63o Shanmugasundaram M, Senthilvelan A, Kore AR. Tetrahedron Lett. 2020; 61: 152464

    • Hydroximoyl fluorides have recently been reported:
    • 63p Gao F.-T, Fang Z, Su R.-R, Ruia P.-X, Hu X.-G. Org. Biomol. Chem. 2018; 16: 9211
    • 64a Just G, Dahl K. Tetrahedron 1968; 24: 5251

    • For significant advances, see:
    • 64b Giurg M, Młochowski J. Pol. J. Chem. 1997; 71: 1093
    • 64c Kiegiel J, Poplawska M, Jóźwik J, Kosior M, Jurczak J. Tetrahedron Lett. 1999; 40: 5605 ; and references cited herein for other previously reported reagents for direct oxidation
    • 64d Kudyba I, Jóźwik J, Romanski J, Raczko J, Jurczak J. Tetrahedron: Asymmetry 2005; 16: 2257

    • For recent examples, see:
    • 64e Bhosale S, Kurhade S, Prasad UV, Palle VP, Bhuniya D. Tetrahedron Lett. 2009; 50: 3948
    • 64f Bhosale S, Kurhade S, Vyas S, Palle VP, Bhuniya D. Tetrahedron 2010; 66: 9582
    • 65a Mukaiyama T, Hoshino T. J. Am. Chem. Soc. 1960; 82: 5339

    • For significant advances, see:
    • 65b Shimizu T, Hayashi Y, Teramura K. Bull. Chem. Soc. Jpn. 1984; 57: 2531
    • 65c Shimizu T, Hayashi Y, Shibafuchi H, Teramura K. Bull. Chem. Soc. Jpn. 1986; 59: 2827
    • 65d Basel Y, Hassner A. Synthesis 1997; 309
    • 65e Maugein N, Wagner A, Mioskowski C. Tetrahedron Lett. 1997; 38: 1547
    • 65f Adams JP, Paterson JR. J. Chem. Soc., Perkin Trans. 1 2000; 3695
    • 65g Giacomelli G, De Luca L, Porcheddu A. Tetrahedron 2003; 59: 5437
    • 65h Namboothiri IN. N, Rastogi N. Top. Heterocycl. Chem. 2008; 12: 1

    • For recent examples, see:
    • 65i Chary RG, Reddy GR, Ganesh YS. S, Prasad KV, Raghunadh A, Krishna T, Mukherjee S, Pal M. Adv. Synth. Catal. 2014; 356: 160
    • 65j Choe H, Cho H, Ko H, Lee J. Org. Lett. 2017; 19: 6004
    • 65k Zatsikha YV, Didukh NO, Swedin RK, Yakubovskyi VP, Blesener TS, Healy AT, Herbert DE, Blank DA, Nemykin VN, Kovtun YP. Org. Lett. 2019; 21: 5713
    • 65l Umemoto N, Imayoshi A, Tsubaki K. Tetrahedron Lett. 2020; 61: 152213
  • 66 Chatterjee N, Pandit P, Halder S, Patra A, Maiti DK. J. Org. Chem. 2008; 73: 7775
  • 67 Das B, Holla H, Mahender G, Banerjee J, Reddy MR. Tetrahedron Lett. 2004; 45: 7347

    • For examples, see
    • 68a Das B, Holla H, Mahender G, Venkateswarlu K, Bandgar BP. Synthesis 2005; 1572
    • 68b Prakash O, Pannu K. ARKIVOC 2007; (xiii): 28
    • 68c Jadhav RD, Mistry HD, Motiwala H, Kadam KS, Kandre S, Gupte A, Gangopadhyay AK, Sharma R. J. Heterocycl. Chem. 2013; 50: 774
    • 68d Jawalekar AM, Reubsaet E, Rutjes FP. J. T, vanDelft FL. Chem. Commun. 2011; 47: 3198

    • Recent examples:
    • 68e Singhal A, Parumala SK. R, Sharma A, Peddinti RK. Tetrahedron Lett. 2016; 57: 719
    • 68f Yoshimura A, Nguyen KC, Rohde GT, Postnikov PS, Yusubov MS, Zhdankin VV. J. Org. Chem. 2017; 82: 11742
    • 68g Subramanian P, Kaliappan KP. Chem. Asian J. 2018; 13: 2031
    • 69a Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 69b Jen T, Mendelsohn BA, Ciufolini MA. J. Org. Chem. 2011; 76: 728
    • 70a Frie JL, Jeffrey CS, Sorensen EJ. Org. Lett. 2009; 11: 5394
    • 70b Schneider M, Richter MJ. R, Carreira EM. J. Am. Chem. Soc. 2020; 142: 17802
    • 71a Yoshimura A, Middleton KR, Todora AD, Kastern BJ, Koski SR, Maskaev AV, Zhdankin VV. Org. Lett. 2013; 15: 4010
    • 71b Han L, Zhang B, Xiang C, Yan J. Synthesis 2014; 46: 503
    • 71c Xiang C, Li T, Yan J. Synth. Commun. 2014; 44: 682
  • 72 Yoshimura A, Nguyen KC, Rohde GT, Saito A, Yusubov MS, Zhdankin VV. Adv. Synth. Catal. 2016; 358: 2340
    • 73a Chen R, Zhao Y, Fang S, Long W, Sun H, Wan X. Org. Lett. 2017; 19: 5896
    • 73b Chen R, Ogunlana AA, Fang S, Long W, Sun H, Bao X, Wan X. Org. Biomol. Chem. 2018; 16: 4683
  • 74 Wang X, Zhu L, Liu P, Wang X, Yuan H, Zhao Y. J. Org. Chem. 2019; 84: 16214
  • 75 Zhang X, He X, Yan N, Zheng H, Hu X. J. Org. Chem. 2020; 85: 15726
  • 76 Dai P, Tan X, Luo Q, Yu X, Zhang S, Liu F, Zhang W.-H. Org. Lett. 2019; 21: 5096
    • 77a Raihan MJ, Kavala V, Kuo C, Raju BR, Yao C.-F. Green Chem. 2010; 12: 1090
    • 77b Kesornpun C, Aree T, Mahidol C, Ruchirawat S, Kittakoop P. Angew. Chem. Int. Ed. 2016; 55: 3997
  • 78 Zhao G, Liang L, Wen CH. E, Tong R. Org. Lett. 2019; 21: 315
  • 79 Muri D, Bode JW, Carreira EM. Org. Lett. 2000; 2: 539
  • 80 Carloni L, Mohnani S, Bonifazi D. Eur. J. Org. Chem. 2019; 7322
  • 81 Svejstrup TD, Zawodny W, Douglas JJ, Bidgeli D, Sheikh NS, Leonori D. Chem. Commun. 2016; 52: 12302