Synthesis 2021; 53(14): 2408-2421
DOI: 10.1055/a-1389-1203
feature

Functionalized Cyclopropanes as Versatile Intermediates for the Diversity-Oriented Synthesis of γ-Lactones, γ-Lactams and δ-Lactams

Adrielle P. Maximiano
a   MESOLab (Laboratory of Methodology and Organic Synthesis), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC, Brazil
,
Giovana S. Ramos
a   MESOLab (Laboratory of Methodology and Organic Synthesis), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC, Brazil
,
Marcelo V. Marques
b   Instituto Federal Catarinense (IFC), Campus Fraiburgo, 89580-000 Fraiburgo-SC, Brazil
,
Marcus M. Sá
a   MESOLab (Laboratory of Methodology and Organic Synthesis), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC, Brazil
› Author Affiliations
The authors are grateful to the Brazilian governmental agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESC (Fundação de Amparo à Pesquisa do Estado de Santa Catarina) for fellowships. Support from INCT-Catálise/FAPESC/ CNPq/CAPES (Instituto Nacional de Ciência e Tecnologia Catálise em Sistemas Moleculares e Nanoestruturados) is also gratefully acknowledged.


To Professor Albert J. Kascheres, in memoriam

Abstract

A two-step procedure for the preparation of cyclopropanecarboxaldehyde-1,1-diester from a γ,δ-epoxyester and its synthetic versatility are described herein. The epoxide ring-opening/cyclopropanation process occurs in the presence of Mg(ClO4)2 under heating, resulting in cyclopropanemethanol-1,1-diester in 65% yield. A mild TEMPO-mediated oxidation of this substrate readily generated the corresponding aldehyde in 75% yield, which was applied in the one-pot synthesis of four cyclopropylidene-γ-lactams and three δ-lactams. In addition, vinylcyclopropanes were obtained through the Wittig reaction of the aldehyde with phosphonium salts and used as precursors for tetrahydrofurans.

Supporting Information



Publication History

Received: 30 November 2020

Accepted after revision: 11 February 2021

Accepted Manuscript online:
11 February 2021

Article published online:
09 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
  • 2 Brackmann F, de Meijere A. Chem. Rev. 2007; 107: 4538
  • 3 Tang P, Qin Y. Synthesis 2012; 44: 2669
  • 4 Green JR, Snieckus V. Synlett 2014; 25: 2258
  • 5 Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
  • 6 Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
  • 7 Singh P, Varshnaya RK, Dei R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
  • 8 Chen DY.-K, Pouwer RH, Richard JA. Chem. Soc. Rev. 2012; 41: 4631
  • 9 Talele TT. J. Med. Chem. 2016; 59: 8712
  • 10 Casar Z. Synthesis 2020; 52: 1315
  • 11 Craig AJ, Hawkins BC. Synthesis 2020; 52: 27
    • 12a Dey R, Banerjee P. Adv. Synth. Catal. 2019; 361: 2849
    • 12b Díaz E, Reyes E, Uria U, Carillo L, Tejero T, Merino P, Vicario JL. Chem. Eur. J. 2018; 24: 8764
    • 12c Wallbaum J, Garve LK. B, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 18756
    • 12d Li L, Li Z, Wang Q. Synlett 2009; 1830
    • 12e Sohn SS, Bode JW. Angew. Chem. Int. Ed. 2006; 45: 6021
    • 13a Kumar P, Kumar R, Banerjee P. J. Org. Chem. 2020; 85: 6535
    • 13b Dey R, Rajput S, Banerjee P. Tetrahedron 2020; 76: 131080
    • 14a Singh P, Kaur N, Banerjee P. J. Org. Chem. 2020; 85: 3393
    • 14b Dey R, Kumar P, Banerjee P. J. Org. Chem. 2018; 83: 5438
    • 14c Kumar P, Dey R, Banerjee P. Org. Lett. 2018; 20: 5163
    • 14d Kim C, Kim SG. Tetrahedron: Asymmetry 2014; 25: 1376
    • 14e Lv H, Mo J, Fang X, Chi YR. Org. Lett. 2011; 13: 5366
    • 15a Han X, Fan J, Lu H, Wan C, Li X, Li H, Yang D, Zhang Y, Xiao Y, Qin Z. Bioorg. Med. Chem. 2015; 23: 6210
    • 15b Kobayashi T, Watanabe M, Yoshida A, Yamada S, Ito M, Abe H, Ito Y, Arisawa M, Shuto S. Bioorg. Med. Chem. 2010; 18: 1076
    • 15c Coxon GD, Al-Dulayymi JR, Baird MS, Knobl S, Roberts E, Minnikin DE. Tetrahedron: Asymmetry 2003; 14: 1211
    • 16a Prieto L, Sánchez-Díez E, Uria U, Reyes E, Carrillo L, Vicario JL. Adv. Synth. Catal. 2017; 359: 1678
    • 16b Bao J, Ren J, Wang Z. Eur. J. Org. Chem. 2012; 2511
    • 16c Li L, Du D, Ren J, Wang Z. Eur. J. Org. Chem. 2011; 614
    • 16d Du D, Wang Z. Eur. J. Org. Chem. 2008; 4949
    • 16e Dancsó A, Kajtár-Peredy M, Szántay C. J. Heterocycl. Chem. 1989; 26: 1867
    • 16f Engel CR, De Krassny AF, Bélanger A, Dionne G. Can. J. Chem. 1973; 51: 3263
  • 17 Warner DT. J. Org. Chem. 1959; 24: 1536
  • 18 Ariente-Fliche C, Braun J, Le Goffic F. Synth. Commun. 1992; 22: 1149
  • 19 Uria U, Vicario JL, Badía D, Carrillo L, Reyes E, Pesquera A. Synthesis 2010; 701
  • 20 Llanes P, Escrich CR, Sayalero S, Pericàs MA. Org. Lett. 2016; 18: 6292
  • 21 Companyó X, Rios R, Alba AN, Cárdenas F, Moyano A, Rios R. Eur. J. Org. Chem. 2009; 3075
  • 22 Marques MV, Sá MM. J. Org. Chem. 2014; 79: 4650
  • 23 Maximiano AP, Sá MM. Eur. J. Org. Chem. 2019; 6515
    • 24a Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
    • 24b Lutjen AB, Quirk MA, Barbera AM, Kolonko EM. Bioorg. Med. Chem. 2018; 26: 5291
    • 25a Chagarovskiy AO, Ivanova OA, Rakhmankulov ER, Budynina EM, Trushkov IV, Melnikov MY. Adv. Synth. Catal. 2010; 352: 3179
    • 25b Gupta A, Yadav VK. Tetrahedron Lett. 2006; 47: 8043
  • 26 De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 3041
    • 27a Defosseux M, Blanchard N, Meyer C, Cossy J. Tetrahedron 2005; 61: 7632
    • 27b Dullayymi JR. A, Baird MS, Roberts E, Deysel M, Verschoor J. Tetrahedron 2007; 63: 2571
    • 28a de Meijere A, Kozhushkov SI, Yufit DS, Grosse C, Kaiser M, Raev VA. Beilstein J. Org. Chem. 2014; 10: 2844
    • 28b Zhao Q, Wong HN. C. Tetrahedron 2007; 63: 6296
    • 30a Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. J. Org. Chem. 2018; 83: 543
    • 30b Budynina EM, Ivanova OA, Chagarovskiy AO, Grishin YK, Trushkov IV, Melnikov MY. J. Org. Chem. 2015; 80: 12212
    • 30c Qu JP, Deng C, Zhou J, Sun XL, Tang Y. J. Org. Chem. 2009; 74: 7684
    • 31a Esposito A, D’Alonzo D, De Fenza M, De Gregorio E, Tamanini A, Lippi G, Dechecchi MC, Guaragna A. Int. J. Mol. Sci. 2020; 21: 3353
    • 31b Hensienne R, Hazelard D, Compain P. ARKIVOC 2019; (iv): 4
    • 31c Arora I, Kashyap VK, Singh AK, Dasgupta A, Kumar B, Shaw AK. Org. Biomol. Chem. 2014; 12: 6855
    • 31d Horne G, Wilson FX, Tinsley J, Williams DH, Storer R. Drug Discovery Today 2011; 16: 107
    • 31e Stocker BL, Dangerfield EM, Win-Mason AL, Haslett GW, Timmer MS. T. Eur. J. Org. Chem. 2010; 1615
  • 32 Ren X, Chandgude AL, Fasan R. ACS Catal. 2020; 10: 2308
  • 33 Terrasson V, van der Lee A, Figueiredo RM, Campagne JM. Chem. Eur. J. 2010; 16: 7815
    • 34a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 34b Li L, Chen M, Jiang F.-C. Bioorg. Med. Chem. 2016; 24: 1853
    • 34c Zhang F, Liu Z.-J, Liu J.-T. Tetrahedron 2010; 66: 6864
    • 35a Ngwendson JN, Schultze CM, Bollinger JW, Banerjee A. Can. J. Chem. 2008; 86: 668
    • 35b Mitsumori T, Koga N, Iwamura H. J. Phys. Org. Chem. 1994; 7: 43
  • 36 Verma K, Banerjee P. Adv. Synth. Catal. 2017; 359: 3848
  • 37 Liao M, Dong S, Deng G, Wang J. Tetrahedron Lett. 2006; 47: 4537
  • 38 Zheng B. Ph.D. Dissertation. University of Hong Kong; P. R. of China: 2005
  • 39 Huang X, Klimczyk S, Veiros LF, Maulide N. Chem. Sci. 2013; 4: 1105
  • 40 Ngamnithiporn A, Jette CI, Bachman S, Virgil SC, Stoltz BM. Chem. Sci. 2018; 9: 2547