Synthesis 2021; 53(13): 2183-2191
DOI: 10.1055/a-1385-9398
short review

Synthetic Applications and Computational Perspectives on Eosin Y Induced Direct HAT Process

Joan Inoa
,
Grecia Dominici
,
Reem Eldabagh
,
Jonathan J. Foley IV
,
Yalan Xing
Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF#58838-UNI1 and PRF#58853-UNI6) for support of this research. J.J.F. acknowledges the ART program at WPU for partial support of this work.


Abstract

In recent years, advancements in photocatalysis have allowed for a plethora of chemical transformations under milder conditions. Many of these photochemical reactions utilize hydrogen atom transfer processes to obtain desired products. Hydrogen atom transfer processes can follow one of two unique pathways: the first, a direct path and the second, an indirect path. In this paper, we highlight the ability of eosin Y to act as a direct hydrogen atom transfer catalyst from both synthetic and computational chemistry perspectives.



Publication History

Received: 01 December 2020

Accepted after revision: 08 February 2021

Publication Date:
08 February 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 1b Schultz DM, Yoon TP. Science 2014; 343: 985
    • 1c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1e Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
    • 1f Shaw MH, Twilton J, Macmillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 2c Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
    • 2d Stephenson CR. J, Yoon TP, MacMillan DW. C. Visible Light Photocatalysis in Organic Chemistry . Wiley; Weinheim: 2018
  • 3 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 4 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 5b Wei G, Basheer C, Tan C.-H, Jiang Z. Tetrahedron Lett. 2016; 57: 3801
  • 6 Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
  • 7 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2016
    • 8a Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 8b Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
  • 9 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 10 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 11a Protti S, Fagnoni M, Ravelli D. ChemCatChem 2015; 7: 1516
    • 11b Raviola C, Raveli D. Synlett 2019; 30: 803
  • 12 Fan X, Rong J, Wu H, Zhou Q, Deng H, Tan J, Xue C, Wu L, Tao H, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
    • 13a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 13b Hari DP, König B. Chem. Commun. 2014; 50: 6688
  • 14 Srivastava V, Singh P. RSC Adv. 2017; 7: 31377
  • 15 Yan D, Chen J, Xiao W. Angew. Chem. Int. Ed. 2019; 58: 378
  • 16 Kuang Y, Wang K, Shi X, Huang X, Meggers E, Wu J. Angew. Chem. Int. Ed. 2019; 58: 16859
  • 17 DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
  • 18 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 19 Yan J, Cheo HW, Teo W, Shi X, Idres S, Deng L, Wu J. J. Am. Chem. Soc. 2020; 142: 11357
    • 20a Combs AP, Zhu W, Crawley ML, Glass B, Polam P, Sparks RB, Modi D, Takvorian A, McLaughlin E, Yue EW, Wasserman Z, Bower M, Wei M, Rupar M, Ala PJ, Reid BM, Ellis D, Gonneville L, Emm T, Taylor N, Yeleswaram S, Li Y, Wynn R, Burn TC, Hollis G, Liu PC. C. J. Med. Chem. 2006; 49: 3774
    • 20b Maccari R, Ottanà R. J. Med. Chem. 2012; 55: 2
  • 21 Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan J, Cui G, Su H, Fang W, Wu J. Angew. Chem. Int. Ed. 2019; 58: 12580
  • 22 Lalonde M, Chan TH. Synthesis 1985; 817
    • 23a Savela R, Zawartka W, Leino R. Organometallics 2012; 31: 3199
    • 23b Pongkittiphan V, Theodorakis EA, Chavasiri W. Tetrahedron Lett. 2009; 50: 5080
    • 23c Kusukawa T, Kabe Y, Nestler B, Ando W. Organometallics 1995; 14: 2556
    • 23d Sommer LH, Frye CL, Parker GA, Michael KW. J. Am. Chem. Soc. 1964; 86: 3271
    • 23e Curtice J, Gilman H, Hammond GS. J. Am. Chem. Soc. 1957; 79: 4754
  • 24 Inoa J, Patel M, Dominici G, Eldabagh R, Patel A, Lee J, Xing Y. J. Org. Chem. 2020; 85: 6181
    • 25a Terent’ev AO, Borisov DA, Vil VA, Dembitsky VM. Beilstein J. Org. Chem. 2014; 10: 34
    • 25b Dembitsky VM. J. Mol. Genet. Med. 2015; 9: 1 DOI: 10.4172/1747-0862.1000163.
    • 25c Norris MD, Perkins MV. Nat. Prod. Rep. 2016; 33: 861
  • 26 Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 1333
    • 27a Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 27b Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Chem. Rev. 2016; 116: 14181
    • 27c Dutcher B, Fan M, Russell AG. ACS Appl. Mater. Interfaces 2015; 7: 2137
  • 28 Ansari MA, Yadav D, Soni S, Srivastava A, Singh MS. J. Org. Chem. 2019; 84: 5404
    • 29a Jagodziński TS. Chem. Rev. 2003; 103: 197
    • 29b Ransborg LK, Albrecht Ł, Weise CF, Bak JR, Jørgensen KA. Org. Lett. 2012; 14: 724
    • 29c Samai S, Chanda T, Ila H, Singh MS. Eur. J. Org. Chem. 2013; 4026
    • 29d Wen L.-R, Men L.-B, He T, Ji G.-J, Li M. Chem. Eur. J. 2014; 20: 5028
    • 29e Luo X, Ge L.-S, An X.-L, Jin J.-H, Wang Y, Sun P.-P, Deng W.-P. J. Org. Chem. 2015; 80: 4611
    • 29f Li M, Kong X.-J, Wen L.-R. J. Org. Chem. 2015; 80: 11999
    • 29g Li C.-X, Liu R.-J, Yin K, Wen L.-R, Li M. Org. Biomol. Chem. 2017; 15: 5820
    • 29h Man N.-N, Wang J.-Q, Zhang L.-M, Wen L.-R, Li M. J. Org. Chem. 2017; 82: 5566
  • 30 Chen M, Di J, Li J, Mo L, Zhang Z. Tetrahedron 2020; 76: 131059
    • 31a Han C, Zhang T, Zhang AQ, Wang DD, Shi WM, Tao JC. Synthesis 2014; 46: 1389
    • 31b Yang YT, Zhu JF, Liao GC, Xu HJ, Yu BT. Curr. Med. Chem. 2018; 25: 2233
  • 33 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 34 Hohenstein EG, Chill ST, Sherrill CD. J. Chem. Theory Comput. 2008; 4: 1996
    • 35a Tully JC. J. Chem. Phys. 1990; 93: 1061
    • 35b Subotnik JE, Jain A, Landry B, Petit A, Outang W, Bellonzi N. Annu. Rev. Phys. Chem. 2016; 67: 387
    • 35c Martinez TJ, Ben-Nun M, Levine RD. J. Phys. Chem. 1996; 100: 7884
    • 35d Curchod BF. E, Martínez TJ. Chem. Rev. 2018; 118: 3305
  • 36 Hohestein EG. J. Am. Chem. Soc. 2016; 138: 1868
  • 37 Slavíček P, Martínez TJ. J. Chem. Phys. 2010; 132: 234102
  • 38 Jorgensen WL, Chandrasekhar J, Madura J. J. Chem. Phys. 1983; 79: 926