Synthesis 2021; 53(09): 1570-1583
DOI: 10.1055/a-1344-2473
short review

Visible-Light-Promoted Asymmetric Catalysis by Chiral Complexes of First-Row Transition Metals

Yanjun Li
,
Ziqi Ye
,
Jiaxin Cai
,
Lei Gong
We gratefully acknowledge funding from the National Natural Science Foundation of China (grants no. 22071209, 21572184), the Natural Science Foundation of Fujian Province (China) (grant no. 2017J06006), and the Fundamental Research Funds for the Central Universities (grant no. 20720190048).


Abstract

This short review presents an overview of visible-light-driven asymmetric catalysis by chiral complexes of first-row transition metals. The processes described here include dual catalysis by a chiral complex of copper, nickel, cobalt, or chromium and an additional photoredox or energy-transfer catalyst, and bifunctional catalysis by a single chiral copper or nickel catalyst. These methods allow valuable transformations with high functional group compatibility. They provide stereoselective construction of carbon–carbon or carbon–heteroatom bonds under mild conditions, and produce a diverse range of previously unknown enantioenriched compounds.

1 Introduction

2 Nickel-Based Photocatalytic Asymmetric Catalysis

3 Copper-Based Photocatalytic Asymmetric Catalysis

4 Photocatalytic Asymmetric Catalysis by Chiral Complexes of Cobalt or Chromium

5 Conclusion



Publication History

Received: 23 November 2020

Accepted after revision: 30 December 2020

Accepted Manuscript online:
30 December 2020

Article published online:
01 February 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected reviews on visible-light photoredox catalysis:
    • 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 1c Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 1d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1e Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 1f Xuan J, Lu L.-Q, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 2013: 6755
    • 1g Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 1h Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 1i Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 1j Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
    • 1k Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 1l Zhu J, Yang W.-C, Wang X.-D, Wu L. Adv. Synth. Catal. 2018; 360: 386
    • 1m An X.-D, Yu S. Tetrahedron Lett. 2018; 59: 1605

      Recent reviews on asymmetric photocatalysis, see:
    • 2a Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
    • 2b Meggers E. Chem. Commun. 2015; 51: 3290
    • 2c Wang C, Lu Z. Org. Chem. Front. 2015; 2: 179
    • 2d Yoon TP. Acc. Chem. Res. 2016; 49: 2307
    • 2e Huo H, Meggers E. Chimia 2016; 70: 186
    • 2f Meggers E. Angew. Chem. Int. Ed. 2017; 56: 5668
    • 2g Huang X, Meggers E. Acc. Chem. Res. 2019; 52: 833
    • 2h Vega-Peñaloza A, Paria S, Bonchio M, Dell’Amico L, Companyó X. ACS Catal. 2019; 9: 6058
    • 2i Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673
    • 2j Lipp A, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2021; 60: 1714
    • 2k Schwinger DP, Bach T. Acc. Chem. Res. 2020; 53: 1933
    • 2l Saha D. Chem. Asian J. 2020; 15: 2129
    • 2m Hong B.-C. Org. Biomol. Chem. 2020; 18: 4298
    • 2n Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Beilstein J. Org. Chem. 2020; 16: 2363
    • 2o Zhang H.-H, Chen H, Zhu C, Yu S. Sci. China Chem. 2020; 63: 637
  • 3 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 4 Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
  • 5 Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L.-A, Harms K, Marsch M, Hilt G, Meggers E. Nature 2014; 515: 100
  • 6 Du J, Skubi KL, Schultz DM, Yoon TP. Science 2014; 344: 392
  • 7 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750

    • Selected recent examples of asymmetric photocatalysis, see:
    • 8a Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science 2016; 354: 1391
    • 8b Tröster A, Alonso R, Bauer A, Bach T. J. Am. Chem. Soc. 2016; 138: 7808
    • 8c Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
    • 8d Ma J, Rosales AR, Huang X, Harms K, Riedel R, Wiest O, Meggers E. J. Am. Chem. Soc. 2017; 139: 17245
    • 8e Li J, Kong M, Qiao B, Lee R, Zhao X, Jiang Z. Nat. Commun. 2018; 9: 2445
    • 8f Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914
    • 8g Zhang K, Lu L.-Q, Jia Y, Wang Y, Lu F.-D, Pan F, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 13375
    • 8h Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
    • 8i Leverenz M, Merten C, Dreuw A, Bach T. J. Am. Chem. Soc. 2019; 141: 20053
    • 8j Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
    • 8k Hörmann FM, Kerzig C, Chung TS, Bauer A, Wenger OS, Bach T. Angew. Chem. Int. Ed. 2020; 59: 9659
  • 9 Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
  • 10 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
  • 11 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 12 Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 13a Badir SO, Molander GA. Chem 2020; 6: 1327
    • 13b Campbell MW, Compton JS, Kelly CB, Molander GA. J. Am. Chem. Soc. 2019; 141: 20069
    • 13c Cabrera-Afonso MJ, Lu Z.-P, Kelly CB, Lang SB, Dykstra R, Gutierrez O, Molander GA. Chem. Sci. 2018; 9: 3186
    • 13d Primer DN, Molander GA. J. Am. Chem. Soc. 2017; 139: 9847
    • 13e Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
    • 13f Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 13g Primer DN, Karakaya I, Tellis JC, Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
    • 13h Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 13i Welin ER, Le CC, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
    • 13j Corcoran EB, Pirnot MT, Lin S, Dreher SD, DiRocco DA, Davies IW, Buchwald SL, MacMillan DW. C. Science 2016; 353: 279
    • 13k Terrett JA, Cuthbertson JD, Shurtleff WV, MacMillan DW. C. Nature 2015; 524: 330
    • 13l Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 13m Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683
    • 13n Ackerman LK. G, Martinez Alvarado JI, Doyle AG. J. Am. Chem. Soc. 2018; 140: 14059
    • 13o Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 7191
    • 13p Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 13q Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 4493
    • 13r Yue H, Zhu C, Kancherla R, Liu F, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 5738
    • 13s Kudisch M, Lim C.-H, Thordarson P, Miyake GM. J. Am. Chem. Soc. 2019; 141: 19479
    • 13t Thullen SM, Treacy SM, Rovis T. J. Am. Chem. Soc. 2019; 141: 14062
    • 13u Garcia-Dominguez A, Mondal R, Nevado C. Angew. Chem. Int. Ed. 2019; 58: 12286
    • 13v Zhu C, Yue H, Maity B, Atodiresei L, Cavallo L, Rueping M. Nat. Catal. 2019; 2: 678
    • 13w Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW. J. Am. Chem. Soc. 2016; 138: 1760
    • 13x Tasker SZ, Jamison TF. J. Am. Chem. Soc. 2015; 137: 9531
    • 13y Ruzi R, Liu K, Zhu C, Xie J. Nat. Commun. 2020; 11: 3312
    • 13z Deng H, Fan X, Chen Z, Xu Q, Wu J. J. Am. Chem. Soc. 2017; 139: 13579
  • 14 Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
  • 15 Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
  • 16 Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
  • 17 Pezzetta C, Bonifazi D, Davidson RW. M. Org. Lett. 2019; 21: 8957
  • 18 Stache EE, Rovis T, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 3679
  • 19 Zhou Q.-Q, Lu F.-D, Liu D, Lu L.-Q, Xiao W.-J. Org. Chem. Front. 2018; 5: 3098
  • 20 Shen Y, Gu Y, Martin R. J. Am. Chem. Soc. 2018; 140: 12200
  • 21 Rand AW, Yin H, Xu L, Giacoboni J, Martin-Montero R, Romano C, Montgomery J, Martin R. ACS Catal. 2020; 10: 4671
  • 22 Cheng X, Lu H, Lu Z. Nat. Commun. 2019; 10: 3549
  • 23 Gandolfo E, Tang X, Roy SR, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 16854
  • 24 Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
  • 25 Shu X, Huan L, Huang Q, Huo H. J. Am. Chem. Soc. 2020; 142: 19058
  • 26 Ding W, Lu L.-Q, Zhou Q.-Q, Wei Y, Chen J.-R, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 63
  • 27 Shen X, Li Y, Wen Z, Cao S, Hou X, Gong L. Chem. Sci. 2018; 9: 4562
  • 28 Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
  • 29 McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756

    • Selected examples of copper-based photocatalysis:
    • 30a Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, Reiser O. Angew. Chem. Int. Ed. 2018; 57: 8288
    • 30b Bagal DB, Kachkovskyi G, Knorn M, Rawner T, Bhanage BM, Reiser O. Angew. Chem. Int. Ed. 2015; 54: 6999
    • 30c Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal. 2019; 9: 1103
    • 30d Sagadevan A, Pampana VK. K, Hwang KC. Angew. Chem. Int. Ed. 2019; 58: 3838
    • 30e Sagadevan A, Charpe VP, Ragupathi A, Hwang KC. J. Am. Chem. Soc. 2017; 139: 2896
    • 30f Caron A, Morin É, Collins SK. ACS Catal. 2019; 9: 9458
  • 31 Perepichka I, Kundu S, Hearne Z, Li C.-J. Org. Biomol. Chem. 2015; 13: 447
  • 32 Querard P, Perepichka I, Zysman-Colman E, Li C.-J. Beilstein J. Org. Chem. 2016; 12: 2636
    • 33a Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
    • 33b Zhang Z, Zhou S, Fu L, Chen P, Li Y, Zhou J, Liu G. Angew. Chem. Int. Ed. 2020; 59: 20439
    • 33c Fu L, Zhang Z, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2020; 142: 12493
    • 33d Wang D, Zhu N, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 15632
  • 34 Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
  • 35 Lu F.-D, Liu D, Zhou L, Lu L.-Q, Yang Q, Zhou Q.-Q, Wei Y, Lan Y, Xiao W.-J. J. Am. Chem. Soc. 2019; 141: 6167
  • 36 Chen J, Wang P.-Z, Lu B, Liang D, Yu X.-Y, Xiao W.-J, Chen J.-R. Org. Lett. 2019; 21: 9763
  • 37 Wang T, Wang Y.-N, Wang R, Zhang B.-C, Yang C, Li Y.-L, Wang X.-S. Nat. Commun. 2019; 10: 5373
  • 38 Chen H, Jin W, Yu S. Org. Lett. 2020; 22: 5910
  • 39 Yang F, Zhao J, Tang X, Wu Y, Yu Z, Meng Q. Adv. Synth. Catal. 2019; 361: 1673
  • 40 Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
  • 41 Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
  • 42 Pagire SK, Kumagai N, Shibasaki M. Chem. Sci. 2020; 11: 5168
  • 43 Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science 2016; 351: 681
  • 44 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
  • 45 Han B, Li Y, Yu Y, Gong L. Nat. Commun. 2019; 10: 3804
  • 46 Zhou K, Yu Y, Lin Y.-M, Li Y, Gong L. Green Chem. 2020; 22: 4597
  • 47 Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. ACS Catal. 2019; 9: 4470
  • 48 Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Org. Lett. 2020; 22: 1490
  • 49 Xia H.-D, Li Z.-L, Gu Q.-S, Dong X.-Y, Fang J.-H, Du X.-Y, Wang L.-L, Liu X.-Y. Angew. Chem. Int. Ed. 2020; 59: 16926
  • 50 Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
  • 51 Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 12374