Synthesis 2021; 53(10): 1719-1733
DOI: 10.1055/a-1344-2434
short review

Recent Advances in C(sp3)–C(sp3) Cross-Coupling via Metalla­photoredox Strategies

Songlin Zheng
,
Yuanyuan Hu
,
We thank Huazhong University of Science and Technology, Hubei Technological Innovation Project (2019ACA125) and Guangdong Basic and Applied Basic Research Foundation (2019A1515110788) for financial support.


Abstract

Transition-metal-catalyzed carbon–carbon cross-coupling reactions represent a significant achievement in modern synthetic chemistry and they have become indispensable tools for the construction of organic molecules. Despite the important progress in this area, methods for coupling two C(sp3)-hybridized alkyl fragments remain elusive. To date, existing methods have largely relied on using organometallic reagents as the nucleophilic coupling partners, thereby inevitably limiting the compatibility of functional groups. Although cross-electrophile coupling may alleviate the pain somewhat, it is necessary to add a stoichiometric amount of a reductant to complete the catalytic cycle. Recently, the emergence of photoredox-mediated single-electron transmetalation has evoked an ideal paradigm for selectively manipulating C(sp3)–C(sp3) cross-coupling with the unprecedented application of native C(sp3) functionalities instead of organometallic reagents, thus opening a new window for C(sp3)–C(sp3) bond creation. This short review highlights the recent advances in this exciting subfield.

1 Introduction

2 Nickel/Photoredox-Catalyzed C(sp3)–C(sp3) Cross-Coupling

3 Palladium/Photoredox-Catalyzed C(sp3)–C(sp3) Cross-Coupling

4 Copper/Photoredox-Catalyzed C(sp3)–C(sp3) Cross-Coupling

5 Direct C(sp3)–H Alkylation via Metallaphotoredox-Mediated Hydrogen­ Atom Transfer

6 Conclusion and Perspectives



Publication History

Received: 09 November 2020

Accepted after revision: 30 December 2020

Publication Date:
30 December 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 2a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 2b Lovering F. Med. Chem. Commun. 2013; 4: 515

      For selected reviews, see:
    • 4a Luh T.-Y, Leung M.-k, Wong K.-T. Chem. Rev. 2000; 100: 3187
    • 4b Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 5 Giovannini R, Stüdemnann N, Dussin G, Knochel P. Angew. Chem. Int. Ed. 1998; 37: 2387

    • For selected works, see:
    • 6a Cárdenas DJ. Angew. Chem. Int. Ed. 1999; 38: 3018
    • 6b Netherton MR, Dai C, Neuschütz K, Fu GC. J. Am. Chem. Soc. 2001; 123: 10099
    • 6c Terao J, Watanabe H, Ikumi A, Kuniyashu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
    • 6d Lautens M, Piguel S. Angew. Chem. Int. Ed. 2000; 39: 1045
    • 6e Ren P, Vechorkin O, von Allmen K, Scopelliti R, Hu X. J. Am. Chem. Soc. 2011; 133: 7084
    • 7a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 7b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 7c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8a Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
    • 8b Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
    • 9a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 9b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 9c Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
  • 10 Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
  • 11 Osawa M, Nagai H, Akita M. Dalton Trans. 2007; 827
  • 12 Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
  • 13 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 14 Lévêque C, Corcé V, Chenneberg L, Ollivier C, Fensterbank L. Eur. J. Org. Chem. 2017; 2118

    • For selected examples of transition-metal-catalyzed ring-opening/coupling of aziridines, see:
    • 15a Huang C.-Y, Doyle AG. J. Am. Chem. Soc. 2012; 134: 9541
    • 15b Jensen KL, Standley EA, Jamison TF. J. Am. Chem. Soc. 2014; 136: 11145
    • 15c Trost BM, Osipov M, Dong G. J. Am. Chem. Soc. 2010; 132: 15800
    • 15d Duda ML, Michael FE. J. Am. Chem. Soc. 2013; 135: 18347
  • 16 Yu X, Zhou Q, Wang P, Liao C, Chen J, Xiao W. Org. Lett. 2018; 20: 421
  • 17 Luo Y, Gutiérrez-Bonet Á, Matsui JK, Rotella ME, Dykstra R, Gutierrez O, Molander GA. ACS Catal. 2019; 9: 8835
  • 18 Dauncey EM, Dighe SU, Douglas JJ, Leonori D. Chem. Sci. 2019; 10: 7728

    • For representative reviews, see:
    • 19a Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 19b Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 19c Knappke CE. I, Grupe S, Gartner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828

    • For selective early examples, see
    • 19d Fillon H, Gosmini C, Perichon J. J. Am. Chem. Soc. 2003; 125: 3867
    • 19e Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
    • 19f Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
    • 19g Czaplik WM, Mayer M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2009; 48: 607
    • 19h Krasovskiy A, Duplais C, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
  • 20 Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
  • 21 Breitenfeld J, Vechorkin O, Corminboeuf C, Scopelliti R, Hu X. Organometallics 2010; 29: 3686

    • For selected reviews, see:
    • 22a Chuentragool P, Kurandina D, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 11586
    • 22b De Abreu M, Belmont P, Brachet E. Eur. J. Org. Chem. 2020; 1327
    • 22c Cheng W.-M, Shang R. ACS Catal. 2020; 10: 9170

    • For selected examples of dual photoredox/Pd-catalyzed bond transformations, see:
    • 22d Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 22e Zoller J, Fabry DC, Ronge MA, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13264
    • 22f Zhou C, Li P, Zhu X, Wang L. Org. Lett. 2015; 17: 6198
    • 22g Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
    • 22h Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc. 2017; 139: 9467
    • 23a Lang SB, O’Nele KM, Tunge JA. J. Am. Chem. Soc. 2014; 136: 13606
    • 23b Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem. Eur. J. 2015; 21: 18589
  • 24 Cartwright KC, Tunge JA. Chem. Sci. 2020; 11: 8167
  • 25 Xuan J, Zeng T, Feng Z, Deng Q, Chen J, Lu L, Xiao W, Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
  • 26 Zhang H, Zhao J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914

    • For selected reviews on Pd-catalyzed AAA reactions, see:
    • 27a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 27b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 28 Shen X, Qian L, Yu S. Sci. China Chem. 2020; 63: 687
  • 29 Zhang H, Zhao J, Yu S. ACS Catal. 2020; 10: 4710
  • 30 Masuda Y, Ito M, Murakami M. Org. Lett. 2020; 22: 4467
  • 31 Zhou Z, Jiao R, Yang K, Chen X, Liang Y. Chem. Commun. 2020; 56: 12957
    • 32a McLean EB, Lee A.-L. Tetrahedron 2018; 74: 4881
    • 32b Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: 450
  • 33 Kautzky JA, Wang T, Evans RW, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 6522
  • 34 Kornfilt DJ. P, MacMillan DW. C. J. Am. Chem. Soc. 2019; 141: 6853
    • 35a Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 35b Chen Z, Rong M.-Y, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
  • 36 Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
  • 37 Shen Y, Gu Y, Martin R. J. Am. Chem. Soc. 2018; 140: 12200
  • 38 Zhang L, Si X, Yang Y, Zimmer M, Witzel S, Sekine K, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2019; 58: 1823
  • 39 Si X, Zhang L, Hashmi AS. K. Org. Lett. 2019; 21: 6329
    • 40a Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
    • 40b Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 40c Huang L, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 10333
  • 41 Santos MS, Corrêa AG, Paixão MW, König B. Adv. Synth. Catal. 2020; 362: 2367
    • 42a Choi GJ, Zhu QL, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
    • 42b Chu JC. K, Rovis T. Nature 2016; 539: 272
    • 42c Yuan W, Zhou ZJ, Gong L, Meggers E. Chem. Commun. 2017; 53: 8964
    • 42d Xu B, Tambar UK. ACS Catal. 2019; 9: 4627
  • 43 Thullen SM, Treacy SM, Rovis T. J. Am. Chem. Soc. 2019; 141: 14062
  • 44 Rand AW, Yin H, Xu L, Giacoboni J, Martin-Montero R, Romano C, Montgomery J, Martin R. ACS Catal. 2020; 10: 4671
  • 45 Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
  • 46 Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
  • 47 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754

    • For mechanistic studies on Ni/photoredox-catalyzed cross-coupling, see:
    • 48a Gutierez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
    • 48b Yuan M, Song Z, Badir SO, Molander GA, Gutierrez O. J. Am. Chem. Soc. 2020; 142: 7225
  • 49 A very recent and elegant example of the enantioselective three-component carboarylation of alkenes enabled by dual photoredox/nickel catalysis has been reported, see: Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J. Am. Chem. Soc. 2020; 142: 20390
    • 50a Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 50b Zheng S, Chen Z, Hu Y, Xi X, Liao Z, Li W, Yuan W. Angew. Chem. Int. Ed. 2020; 59: 17910