Synlett 2021; 32(05): 472-487
DOI: 10.1055/a-1308-0021
account
The Power of Transition Metals: An Unending Well-Spring of New Reactivity

Palladium-Catalyzed Functionalization of Olefins and Alkynes: From Oxyalkynylation to Tethered Dynamic Kinetic Asymmetric Transformations (DYKAT)

Stefano Nicolai
,
Ugo Orcel
,
Bastian Muriel
,
Phillip D. G. Greenwood
,
Luca Buzzetti
,
Mikus Puriņš
,
We thank the Swiss National Science Foundation (Grants 20021_119810 and 20021_15992), ERC (European Research Council, Starting Grant iTools4MC, number 334840 and Consolidator Grant, SeleCHEM, number 771170), and EPFL for financial support.


Abstract

This review presents an account of the palladium-catalyzed functionalizations of alkenes and alkynes developed at the Laboratory of Catalysis and Organic Synthesis (LCSO). Starting from the intramolecular oxy- and aminoalkynylation of alkenes, tethered methods were then developed to functionalize allylic amines and alcohols, as well as propargylic amines. Finally, a new dynamic kinetic asymmetric transformation was developed based on the use of a ‘one-arm’ Trost-type ligand, giving access to enantiopure amino alcohols. Each section is a personal account by the researcher(s) who performed the work.

1 Introduction,

2 Oxy- and Aminoalkynylation of Olefins,

3 In Situ Tethering Strategies for the Synthesis of Vicinal Amino Alcohols and Diamines,

4 Carboamination of Allylic Alcohols,

5 Carbooxygenation of Propargylic Amines,

6 Enantioselective Carboetherification/Hydrogenation via a Catalytically Formed Chiral Auxiliary,

7 Conclusion



Publication History

Received: 30 October 2020

Accepted after revision: 10 November 2020

Publication Date:
10 November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. Wiley; Chichester: 2004
    • 2a Trost BM. Acc. Chem. Res. 1996; 29: 355
    • 2b Trost BM, Bunt RC, Lemoine RC, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
    • 2c Trost BM. J. Org. Chem. 2004; 69: 5813
    • 2d Trost BM, Xu JY. J. Am. Chem. Soc. 2005; 127: 2846
    • 2e Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 2f Trost BM, Quancard J. J. Am. Chem. Soc. 2006; 128: 6314
    • 3a Trost BM, King SA. J. Am. Chem. Soc. 1990; 112: 408
    • 3b Trost BM, Cramer N, Bernsmann H. J. Am. Chem. Soc. 2007; 129: 3086
    • 3c Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
    • 3d Trost BM, McDougall PJ, Hartmann O, Wathen PT. J. Am. Chem. Soc. 2008; 130: 14960
    • 3e Trost BM, Bringley DA, Silverman SM. J. Am. Chem. Soc. 2011; 133: 7664
    • 3f Trost BM, Mata G. Acc. Chem. Res. 2020; 53: 1293
    • 4a Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 4b Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 4c Dick AR, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2005; 127: 12790
    • 4d Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
    • 4e Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
  • 5 Canty AJ, Rodemann T, Skelton BW, White AH. Organometallics 2006; 25: 3996
  • 6 Trend RM, Ramtohul YK, Stoltz BM. J. Am. Chem. Soc. 2005; 127: 17778
  • 7 Nicolai S, Erard S, Fernández González D, Waser J. Org. Lett. 2010; 12: 384
  • 8 Nicolai S, Piemontesi C, Waser J. Angew. Chem. Int. Ed. 2011; 50: 4680
    • 9a Nicolai S, Waser J. Org. Lett. 2011; 13: 6324 ; corrigendum: Org. Lett. 2012, 14, 3563
    • 9b Nicolai S, Sedigh-Zadeh R, Waser J. J. Org. Chem 2013; 78: 3783
    • 9c Nicolai S, Swallow P, Waser J. Tetrahedron 2015; 71: 5959
    • 10a Orcel U, Waser J. Angew. Chem. Int. Ed. 2015; 54: 5250
    • 10b Orcel U, Waser J. Angew. Chem. Int. Ed. 2016; 55: 12881
    • 10c Orcel U, Waser J. Chem. Sci. 2017; 8: 32
  • 11 Muriel B, Orcel U, Waser J. Org. Lett. 2017; 19: 3548
    • 12a Greenwood PD. G, Grenet E, Waser J. Chem. Eur. J. 2019; 25: 3010
    • 12b Greenwood PD. G, Waser J. Eur. J. Org. Chem. 2019; 2019: 5183
  • 13 Buzzetti L, Puriņš M, Greenwood PD. G, Waser J. J. Am. Chem. Soc. 2020; 142: 17334
    • 14a Vita MV, Mieville P, Waser J. Org. Lett. 2014; 16: 5768
    • 14b Vita MV, Caramenti P, Waser J. Org. Lett. 2015; 17: 5832
    • 15a Lira R, Wolfe JP. J. Am. Chem. Soc. 2004; 126: 13906
    • 15b Ney JE, Wolfe JP. Angew. Chem. Int. Ed. 2004; 43: 3605
    • 15c Wolfe JP, Rossi MA. J. Am. Chem. Soc. 2004; 126: 1620
    • 15d Mai DN, Wolfe JP. J. Am. Chem. Soc. 2010; 132: 12157
    • 15e Neukom JD, Perch NS, Wolfe JP. J. Am. Chem. Soc. 2010; 132: 6276
  • 16 Unpublished results.
    • 17a MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM. J. Am. Chem. Soc. 2011; 133: 20100
    • 17b Guimond N, MacDonald MJ, Lemieux V, Beauchemin AM. J. Am. Chem. Soc. 2012; 134: 16571
  • 18 Van Benthem RA. T. M, Hiemstra H, Speckamp WN. J. Org. Chem. 1992; 57: 6083 ; and references cited therein
  • 19 Weinstein AB, Schuman DP, Tan ZX, Stahl SS. Angew. Chem. Int. Ed. 2013; 52: 11867
  • 20 Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
  • 21 García-Domínguez P, Fehr L, Rusconi G, Nevado C. Chem. Sci. 2016; 7: 3914
  • 22 Oost R, Rong J, Minnaard AJ, Harutyunyan SR. Catal. Sci. Technol. 2014; 4: 1997
  • 23 In Comprehensive Organic Name Reactions and Reagents. Wang Z. Wiley; Chichester: 2010. DOI: 10.1002/9780470638859.conrr483