Synlett
DOI: 10.1055/a-1300-3453
account
Radicals – by Young Chinese Organic Chemists

Investigations on the 1,2-Hydrogen Atom Transfer Reactivity of Alkoxyl Radicals under Visible-Light-Induced Reaction Conditions

Dan Liu
a  State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Jing Zhang
a  State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Yiyun Chen
a  State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
b  School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. of China
› Author Affiliations
Financial support was provided by the National Natural Science Foundation of China (91753126, 21622207) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20020200).


Published as part of the Cluster Radicals – by Young Chinese Organic Chemists

Abstract

The alkoxyl radicals have demonstrated superior hydrogen atom transfer reactivity in organic synthesis due to the strong oxygen–hydrogen bond dissociation energy. However, only the intermolecular hydrogen atom transfer (HAT) and intramolecular 1,5-HAT have been widely studied and synthetically utilized for C(sp3)–H functionalization. This Account summarizes our investigations on the unusual 1,2-HAT reactivity of alkoxyl radicals under visible-light-induced reaction conditions for the α-C–H functionalization. Various mechanistic investigations were discussed in this Account to address three key questions to validate the 1,2-HAT reactivity of alkoxyl radicals.

1 Introduction

2 Could Aldehydes/Ketones Be the Sole Reaction Intermediate for the α-C–H Allylation? NO

3 Is the Alkoxyl Radical Absolutely Involved in the Reaction? YES

4 Does the 1,2-HAT of Alkoxyl Radicals Irrefutably Exist? YES

5 Conclusion

Supporting Information



Publication History

Received: 18 September 2020

Accepted after revision: 29 October 2020

Publication Date:
29 October 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 3a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 3b Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
  • 4 Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
  • 5 Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
  • 6 Kim S, Lee TA, Song Y. Synlett 1998; 471
    • 7a Martín A, Rodríguez MS, Suárez E. Tetrahedron Lett. 1999; 40: 7525
    • 7b Sartillo-Piscil F, Vargas M, Anaya de Parrodi C, Quintero L. Tetrahedron Lett. 2003; 44: 3919
    • 7c Martín A, Quintanal LM, Suárez E. Tetrahedron Lett. 2007; 48: 5507
    • 7d Martín A, Pérez-Martín I, Quintanal LM, Suárez E. Tetrahedron Lett. 2008; 49: 5179
    • 7e Hernández-García L, Quintero L, Sánchez M, Sartillo-Piscil F. J. Org. Chem. 2007; 72: 8196
    • 7f Francisco CG, León EI, Martín A, Moreno P, Rodríguez MS, Suárez E. J. Org. Chem. 2001; 66: 6967
    • 7g Zlotorzynska M, Zhai H, Sammis GM. Org. Lett. 2008; 10: 5083
    • 7h Zhu H, Wickenden JG, Campbell NE, Leung JC. T, Johnson KM, Sammis GM. Org. Lett. 2009; 11: 2019
    • 7i Sánchez-Eleuterio A, Quintero L, Sartillo-Piscil F. J. Org. Chem. 2011; 76: 5466
    • 7j Rueda-Becerril M, Leung JC. T, Dunbar CR, Sammis GM. J. Org. Chem. 2011; 76: 7720
    • 7k Zhu H, Leung JC. T, Sammis GM. J. Org. Chem. 2015; 80: 965
  • 8 Zlotorzynska M, Sammis GM. Org. Lett. 2011; 13: 6264
    • 9a Wang C, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
    • 9b Zhang J, Li Y, Xu R, Chen Y. Angew. Chem. Int. Ed. 2017; 56: 12619
    • 9c Ito Y, Kimura A, Osawa T, Hari Y. J. Org. Chem. 2018; 83: 10701
    • 9d Han JB, Guo A, Tang XY. Chem. Eur. J. 2019; 25: 2989
    • 9e Shi JL, Wang Z, Zhang R, Wang Y, Wang J. Chem. Eur. J. 2019; 25: 8992
  • 10 Zhang J, Liu D, Liu S, Ge Y, Lan Y, Chen Y. iScience 2020; 23: 100755
  • 11 Qi L, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 13312
  • 12 Zhong LJ, Wang HY, Ouyang XH, Li JH, An DL. Chem. Commun. 2020; 56: 8671
    • 13a Capaldo L, Ravelli D. Chem. Commun. 2019; 55: 3029
    • 13b He F.-S, Ye S, Wu J. ACS Catal. 2019; 9: 8943
    • 13c Rossler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
    • 14a Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik MH, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
    • 14b Bao X, Wang Q, Zhu J. Chem. Eur. J. 2019; 25: 11630
    • 14c Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 2139
    • 14d Barthelemy AL, Tuccio B, Magnier E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790
    • 14e Barthelemy A.-L, Tuccio B, Magnier E, Dagousset G. Synlett 2019; 30: 1489
    • 14f Kim Y, Lee K, Mathi GR, Kim I, Hong S. Green Chem. 2019; 21: 2082
  • 15 Hu C, Chen Y. Org. Chem. Front. 2015; 2: 1352