Synlett 2021; 32(11): 1060-1071
DOI: 10.1055/a-1297-6902
account

Diazocarbonyl Compounds in Organofluorine Chemistry

,
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16c, 106 91 Stockholm, Sweden
› Author Affiliations
We thank the Knut och Alice Wallenbergs Foundation (Dnr: 2018.0066) and Swedish Research Council (VR) for financial support.


Abstract

Diazocarbonyl compounds are useful substrates in di- and trifunctionalization reactions based on F/CF3/SCF3 introduction. In the presented reactions, various electrophilic F/CF3/SCF3-transfer reagents were used. The majority of the reactions were based on rhodium catalysis and the application of various oxygen nucleophiles, such as alcohols, cyclic/acyclic ethers, and carboxylic acids. The oxyfluorination reactions were further developed to provide a new fluorine-18 labeling method. Density functional theory (DFT) modeling studies were performed to get a deeper mechanistic understanding of these reactions. These DFT modeling studies indicated that the catalytic reactions proceed through formation of rhodium carbene and oxonium ylide intermediates. The oxonium ylides undergo tautomerization to enol ether type species that subsequently react with the electrophilic F/CF3/SCF3-transfer reagents. We also present an arylation–trifluoromethylthiolation reaction for simultaneous introduction of C–SCF3 and C–C bonds into diazocarbonyl compounds. This reaction does not proceed by rhodium catalysis, but follows a Hooz-type mechanism.

1 Introduction

2 Diazocarbonyl Compounds: Versatile Substrates in Organic ­Synthesis

3 Fluorination, Trifluoromethylation, and Trifluoromethylthiolation of Diazo Substrates

3.1 Metal-Free Reactions

3.2 Metal-Catalyzed Reactions with Nucleophilic Reagents

3.3 Metal-Catalyzed Reactions with Electrophilic Reagents

4 Oxyfluorination Reactions

4.1 Fluorobenziodoxole as a Fluorine Source

4.2 [18F]Fluorobenziodoxole as a Fluorine Source for Radiolabeling

4.3 Oxyfluorination with NFSI

5 Oxytrifluoromethylation

6 Oxytrifluoromethylthiolation

7 Arylation–Trifluoromethylthiolation Reaction

8 Conclusions and Outlook



Publication History

Received: 14 September 2020

Accepted after revision: 26 October 2020

Accepted Manuscript online:
26 October 2020

Article published online:
23 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1b Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 1c Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
    • 2a Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 2b Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Chem. Eur. J. 2019; 25: 11797
    • 2c Preshlock S, Tredwell M, Gouverneur V. Chem. Rev. 2016; 116: 719
    • 2d Miller PW, Long NJ, Vilar R, Gee AD. Angew. Chem. Int. Ed. 2008; 47: 8998
  • 3 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 4 Lemal DM. J. Org. Chem. 2004; 69: 1
  • 5 Murphy CD, Schaffrath C, O’Hagan D. Chemosphere 2003; 52: 455
  • 6 Hansen KJ, Clemen LA, Ellefson ME, Johnson HO. Environ. Sci. Technol. 2001; 35: 766
  • 7 Siegemund G, Schwertfeger W, Feiring A, Smart B, Behr F, Vogel H, McKusick B, Kirsch P. In Ullmann's Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2016. DOI: 10.1002/14356007.a11_349.pub2
    • 8a O’Hagan D. Chem. Eur. J. 2020; 26: 7981
    • 8b Huchet QA, Kuhn B, Wagner B, Kratochwil NA, Fischer H, Kansy M, Zimmerli D, Carreira EM, Müller K. J. Med. Chem. 2015; 58: 9041
    • 9a Jeffries B, Wang Z, Felstead HR, Le Questel J.-Y, Scott JS, Chiarparin E, Graton J, Linclau B. J. Med. Chem. 2020; 63: 1002
    • 9b Jeffries B, Wang Z, Graton J, Holland SD, Brind T, Greenwood RD. R, Le Questel J.-Y, Scott JS, Chiarparin E, Linclau B. J. Med. Chem. 2018; 61: 10602
    • 9c Linclau B, Wang Z, Compain G, Paumelle V, Fontenelle CQ, Wells N, Weymouth-Wilson A. Angew. Chem. Int. Ed. 2016; 55: 674
    • 9d Rodil A, Bosisio S, Ayoup MS, Quinn L, Cordes DB, Slawin AM. Z, Murphy CD, Michel J, O’Hagan D. Chem. Sci. 2018; 9: 3023
  • 10 Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Angew. Chem. Int. Ed. 2019; 58: 2580
  • 11 Campbell MG, Mercier J, Genicot C, Gouverneur V, Hooker JM, Ritter T. Nat. Chem. 2017; 9: 1
    • 12a Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
    • 12b Wu S, Song H.-X, Zhang C.-P. Chem. Asian J. 2020; 15: 1660
    • 12c Zhao R, Shi L. Angew. Chem. Int. Ed. 2020; 59: 12282
    • 13a Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 13b Doyle MP. Acc. Chem. Res. 1986; 19: 348
    • 14a Padwa A, Hornbuckle SF. Chem. Rev. 1991; 91: 263
    • 14b Guo X, Hu W. Acc. Chem. Res. 2013; 46: 2427
  • 15 Curtius T. J. Prakt. Chem. 1888; 38: 396
  • 16 Olah GA, Welch JT, Vankar YD, Nojima M, Kerekes I, Olah JA. J. Org. Chem. 1979; 44: 3872
  • 17 Tao J, Tran R, Murphy GK. J. Am. Chem. Soc. 2013; 135: 16312
  • 18 Emer E, Twilton J, Tredwell M, Calderwood S, Collier TL, Liégault B, Taillefer M, Gouverneur V. Org. Lett. 2014; 16: 6004
  • 19 Zhou Y, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 10444
  • 20 Chen G, Song J, Yu Y, Luo X, Li C, Huang X. Chem. Sci. 2016; 7: 1786
  • 21 Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 22a Gray EE, Nielsen MK, Choquette KA, Kalow JA, Graham TJ. A, Doyle AG. J. Am. Chem. Soc. 2016; 138: 10802
    • 22b Buchsteiner M, Martinez-Rodriguez L, Jerabek P, Pozo I, Patzer M, Nöthling N, Lehmann CW, Fürstner A. Chem. Eur. J. 2020; 26: 2509
  • 23 Hu M, Ni C, Hu J. J. Am. Chem. Soc. 2012; 134: 15257
  • 24 Wang X, Zhou Y, Ji G, Wu G, Li M, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 3093
  • 25 Yuan W, Eriksson L, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 8410
  • 26 Mai BK, Himo F. Top. Organomet. Chem. 2020; 67: 39
  • 27 Mai BK, Szabó KJ, Himo F. ACS Catal. 2018; 8: 4483
    • 28a Zhang J, Szabó KJ, Himo F. ACS Catal. 2017; 7: 1093
    • 28b Yan T, Zhou B, Xue X.-S, Cheng J.-P. J. Org. Chem. 2016; 81: 9006
  • 29 Cortés González MA, Nordeman P, Bermejo Gómez A, Meyer DN, Antoni G, Schou M, Szabó KJ. Chem. Commun. 2018; 54: 4286
  • 30 Cortés González MA, Jiang X, Nordeman P, Antoni G, Szabó KJ. Chem. Commun. 2019; 55: 13358
  • 31 Cenini S, Cravotto G, Giovenzana GB, Palmisano G, Tollari S. Tetrahedron 1999; 55: 6577
    • 32a Zeghida W, Besnard C, Lacour J. Angew. Chem. Int. Ed. 2010; 49: 7253
    • 32b Rix D, Ballesteros-Garrido R, Zeghida W, Besnard C, Lacour J. Angew. Chem. Int. Ed. 2011; 50: 7308
  • 33 Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 34a Janson PG, Ghoneim I, Ilchenko NO, Szabó KJ. Org. Lett. 2012; 14: 2882
    • 34b Ilchenko NO, Janson PG, Szabó KJ. J. Org. Chem. 2013; 78: 11087
    • 34c Ilchenko NO, Janson PG, Szabó KJ. Chem. Commun. 2013; 49: 6614
    • 34d Ilchenko NO, Tasch BO. A, Szabó KJ. Angew. Chem. Int. Ed. 2014; 53: 12897
    • 34e Ilchenko NO, Hedberg M, Szabó KJ. Chem. Sci. 2017; 8: 1056
  • 35 Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
  • 36 Lübcke M, Yuan W, Szabó KJ. Org. Lett. 2017; 19: 4548
  • 37 Martin MG, Ganem B. Tetrahedron Lett. 1984; 25: 251
  • 38 Mai BK, Szabó KJ, Himo F. Org. Lett. 2018; 20: 6646
  • 39 Peng C, Wang Y, Wang J. J. Am. Chem. Soc. 2008; 130: 1566
    • 40a Hooz J, Linke S. J. Am. Chem. Soc. 1968; 90: 5936
    • 40b Hooz J, Linke S. J. Am. Chem. Soc. 1968; 90: 6891
    • 40c Peng C, Zhang W, Yan G, Wang J. Org. Lett. 2009; 11: 1667
  • 41 Lübcke M, Bezhan D, Szabó KJ. Chem. Sci. 2019; 10: 5990
  • 42 Pasto DJ, Wojtkowski PW. Tetrahedron Lett. 1970; 11: 215