Subscribe to RSS
DOI: 10.1055/s-2008-1078549
One-Pot Oxidative Conjugate Hydrothiocyanation-Hydrosulfenylation of Baylis-Hillman Alcohols Promoted by a Protic Ionic Liquid
Publication History
Publication Date:
02 July 2008 (online)

Abstract
The first example of one-pot oxidative conjugate hydrothiocyanation-hydrosulfenylation of acrylic ester derived Baylis-Hillman alcohols, that is, methyl 3-aryl-3-hydroxy-2-methylenepropanoate, is reported. The reaction involves protic ionic liquid [Hmim]HSO4-mediated oxidation of Baylis-Hillman alcohols with NaNO3 to give methyl (E)-α-formylcinnamates followed by conjugate addition of sulfur-centered nucleophiles (NH4SCN/PhSH) to afford the corresponding methyl β-thiocyanato (or β-phenylsulfenyl)-α-formylhydrocinnamates diastereoselectively in 74-87% yields in a one-pot procedure. After isolation of the product, the ionic liquid [Hmim]HSO4 could be easily recycled for further use without any loss of efficiency.
Key words
Baylis-Hillman alcohols - conjugate addition - oxidation - protic ionic liquids - methyl cinnamates - stereoselective synthesis
-
1a
Baylis AB, andHillman MED. inventors; Offenlegungsschrift 2155113. 1972; US 3,743,669, ; Chem. Abstr. 1972, 77, 34174 -
1b
Ciganek E. In Organic Reactions Vol. 51: Wiley; New York: 1997. p.201 -
1c
Ghosh AK.Bilcer G.Schiltz G. Synthesis 2001, 2203 -
2a
Basavaiah D.Rao KV.Reddy RJ. Chem. Soc. Rev. 2007, 36: 1581 -
2b
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
2c
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
2d
Basavaiah D.Rao PD. Tetrahedron 1996, 52: 8001 -
2e
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 -
3a
Yadav JS.Gupta MK.Pandey SK.Reddy BVS.Sarma AVS. Tetrahedron Lett. 2005, 46: 2761 -
3b
Basavaiah D.Hyma RS.Muthukumaran K.Kumaragurubaran N. Synthesis 2000, 217 -
3c
Roy O.Riahi A.Hénin F.Muzart J. Tetrahedron 2000, 56: 8133 -
3d
Basavaiah D.Satyanarayana T. Tetrahedron Lett. 2002, 43: 4301 -
3e
Kundu MK.Bhat SV. Synth. Commun. 1999, 29: 93 -
3f
Basavaiah D.Bhavani AKD.Pandiaraju S.Sarma PKS. Synlett 1995, 243 -
4a
Basavaiah D.Krishnamacharyulu M.Hyma RS.Sarma PKS.Kumaragurabaran N. J. Org. Chem. 1999, 64: 1197 -
4b
Park DY.Gowarisankar S.Kim JN. Tetrahedron Lett. 2006, 47: 6641 -
4c
Das B.Banerjee J.Chowdhury N.Majhi A.Mahender G. Helv. Chim. Acta 2006, 89: 876 -
4d
Kim JN.Chung YM.Im YJ. Tetrahedron Lett. 2002, 43: 6209 -
4e
Hbaïeb S.Latiri Z.Amri H. Synth. Commun. 1999, 29: 981 -
5a
Liu Y.Xu X.Zheng H.Xu D.Xu Z.Zhang Y. Synlett 2006, 571 -
5b
Srihari P.Singh AP.Jain R.Yadav JS. Synthesis 2006, 2772 -
5c
Das B.Chowdhury N.Damodar K.Banerjee J. Chem. Pharm. Bull. 2007, 55: 1274 -
5d
Kim JN.Kim JM.Lee KY. Synlett 2003, 821 -
5e
Kim JN.Kim HS.Gong JH.Chung YM. Tetrahedron Lett. 2001, 42: 8341 -
6a
Bhuniya D.Gujjary S.Sengupta S. Synth. Commun. 2006, 36: 151 -
6b
Wang W.Yu M. Tetrahedron Lett. 2004, 45: 7141 -
6c
Azizi N.Saidi MR. Tetrahedron Lett. 2002, 43: 4305 -
6d
Kamimura A.Morita R.Matsuura K.Omata Y.Shirai M. Tetrahedron Lett. 2002, 43: 6189 -
7a
Yadav JS.Reddy BVS.Singh AP.Basak AK. Synthesis 2008, 469 -
7b
Yadav JS.Reddy BVS.Singh AP.Basak AK. Tetrahedron Lett. 2007, 48: 4169 -
8a
Fluharty AL. In The Chemistry of the Thiol Group Part 2:Patai S. Wiley; New York: 1974. p.589 -
8b
Clark JH. Chem. Rev. 1980, 80: 429 -
8c
Fujita E.Nagao YJ. Bioorg. Chem. 1977, 6: 287 -
8d
Trost BM.Keeley DE. J. Org. Chem. 1975, 40: 2013 -
8e
Shono T.Matsumura Y.Kashimura S.Hatanaka K. J. Am. Chem. Soc. 1979, 101: 4752 -
8f
Nishimura K.Ono M.Nagaoka Y.Tomioka K. J. Am. Chem. Soc. 1997, 119: 12974 - 9
Patani GA. Chem. Rev. 1996, 96: 3147 -
10a
Kelly TR.Kim MH.Curtis ADM. J. Org. Chem. 1993, 58: 5855 -
10b
Leblanc BL.Jursic BC. Synth. Commun. 1998, 28: 3591 -
10c
Toste FD.Laronde F.Still WJ. Tetrahedron Lett. 1995, 36: 2949 -
10d
Metzer JB. In Comprehensive Heterocyclic Chemistry Vol. 6:Katritzky A. Pergamon; Oxford: 1984. p.235 -
10e
Newman AA. In Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives Academic Press; New York: 1975. - 11
Mehta RG.Liu J.Constantinou A.Thomas CF.Hawthorne M.You M.Gerhaeusers C.Pezzuto JM.Moon RC.Moriarty RM. Carcinogenesis 1995, 16: 399 - 12
Bakuzis P.Bakuzis MLF. J. Org. Chem. 1981, 46: 235 -
13a
Chowdhury S.Mohan RS.Scott JL. Tetrahedron 2007, 63: 2363 -
13b
Greaves TL.Drummond CJ. Chem. Rev. 2008, 108: 206 -
13c
Bao W.Wang Z. Green Chem. 2006, 8: 1028 -
13d
Zhao D.Wu M.Kou Y.Min E. Catal. Today 2002, 74: 157 -
13e
Dupont J.de Souza RF.Suarez PAZ. Chem. Rev. 2002, 102: 3667 -
13f
Qiao K.Yakoyama C. Chem. Lett. 2004, 33: 472 -
13g
Sun W.Xia C.-G.Wang H.-W. Tetrahedron Lett. 2003, 44: 2409 -
13h
Kamal A.Chouhan G. Tetrahedron Lett. 2005, 46: 1489 -
13i
Earle MJ.Katdare SP.Seddon KR. Org. Lett. 2004, 6: 707 -
14a
Cole AC.Jensen JL.Ntai I.Tran KLT.Weaver KJ.Forbes DC.Davis JH. J. Am. Chem. Soc. 2002, 124: 5962 -
14b
Welton T. Chem. Rev. 1999, 99: 2071 -
14c
Sheldon R. Chem. Commun. 2001, 23: 2399 -
14d
Zhu HP.Yang F.Tang J.He MY. Green Chem. 2003, 5: 38 -
14e
Hajipour AR.Rafiee F.Ruoho AE. Synlett 2007, 1118 -
14f
Zhao G.Jiang T.Gao H.Han B.Huang J.Sun D. Green Chem. 2004, 6: 75 -
15a
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 8037 -
15b
Yadav LDS.Patel R.Rai VK.Srivastava VP. Tetrahedron Lett. 2007, 48: 7793 -
15c
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2007, 1905 -
15d
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455 -
15e
Yadav LDS.Rai VK.Yadav S. Tetrahedron 2006, 62: 5464 -
15f
Yadav LDS.Patel R.Srivastava VP. Synlett 2008, 583 -
15g
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2008, 529 -
17a
Kamimura A.Mitsudera H.Asano S.Kidera S.Kakehi A. J. Org. Chem. 1999, 64: 6353 -
17b
Albertshofer K.Thayumanavan R.Utsumi N.Tanaka F.Barbas CF. Tetrahedron Lett. 2007, 48: 693 -
18a
Miyata O.Shinada T.Naito T.Ninomiya I. Chem. Pharm. Bull. 1989, 37: 3158 -
18b
Miyata O.Shinada T.Ninomiya I.Naito T.Date T.Okamura K.Inagaki S. J. Org. Chem. 1991, 56: 6556 -
18c
Hassan AEA.Nishizono N.Minakawa N.Shuto S.Matsuda A. J. Org. Chem. 1996, 61: 6261 -
18d
Nishimura K.Tomioka K. J. Org. Chem. 2002, 67: 431 - 19
Qian W.Pei L. Synlett 2006, 709 -
20a
Watanabe T.Hayashi K.Yoshimatsu S.Sakai K.Takeyama S.Takashima K. J. Med. Chem. 1980, 23: 50 -
20b
Senokuchi K.Nakai H.Nakayama Y.Odagaki Y.Sakaki K.Kato M.Maruyama T.Miyazaki T.Ito H.Kamiyasu K.Kim S.Kawamura M.Hamanaka N. J. Med. Chem. 1995, 38: 4508 -
21a
Hong WP.Lim HN.Park HW.Lee K.-J. Bull. Korean Chem. Soc. 2005, 26: 655 -
21b
Das B.Banerjee J.Chowdhury N.Majhi A. Chem. Pharm. Bull. 2006, 54: 1725 - 23
Basavaiah D.Hyma RS.Kumaragurubaran N. Tetrahedron 2000, 56: 5905 - 24
Mehdi H.Bodor A.Lantos D.Horváth IT.de Vas DE.Binnemans K. J. Org. Chem. 2007, 72: 1517 - 25
Cai J.Zhou Z.Zhao G.Tang C. Org. Lett. 2002, 4: 4723
References and Notes
General Procedure
for the Synthesis of Methyl β-Thiocyanato-α-formylhydrocinnamates
3 and Methyl β-Phenylsulfenyl-α-formylhydrocinnamates
4
A mixture of BH alcohol 1 (1
mmol) and NaNO3 (1 mmol) was stirred in 1 mL of [Hmim]HSO4 at
80 ˚C for 1-3 h (Table
[²]
). The reaction mixture
was cooled to r.t. and NH4SCN or PhSH (1.1 mmol) was
added. The mixture was further stirred at r.t. for 2-3
h. After completion of the reaction (monitored by TLC), the product
was extracted with EtOAc (3 10 mL). The combined
extract was dried over MgSO4, filtered, concentrated
under reduced pressure, and purified by silica gel column chromatography
(hexane-EtOAc, 8.5:1.5) to afford the desired product 3 or 4. After isolation
of the product, the remaining ionic liquid was washed with Et2O
(2 10 mL) to remove any organic impurity, then
H2SO4 (2.1 mmol in the case of compound 3 and 1 mmol in the case of 4)
was added, the mixture was stirred at 80 ˚C for
1 h, and cooled to about -5 ˚C in an
ice-salt bath. The precipitated solid [Na2SO4,
(NH4)2SO4] was filtered
out, and the filtrate was dried under vacuum to afford the IL [Hmim]HSO4,
which was used in subsequent runs.
Data
of Representative Compounds
Compound 3a:
white solid, yield 78%, mp 104-105 ˚C.
IR (KBr): 3026, 2115, 1745, 1718, 1603, 1578, 1460, 1284, 1194,
764, 714 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): d = 3.68
(dd, 1 H, J = 3.9,
2.1 Hz, 2-H), 3.82 (s, 3 H, MeOCO), 4.86 (d, 1 H, J = 3.9
Hz, 3-H), 7.14-7.32 (m, 5 Harom), 9.56 (d, 1
H, J = 2.1
Hz, CHO). ¹³C NMR (100 MHz, CDCl3,
TMS): d = 36.6, 63.9, 52.8, 112.4, 126.9,
128.6, 129.2, 140.9, 169.1, 198.3. MS (EI): m/z = 249 [M+].
Anal. Calcd (%) for C12H11NO3S:
C, 57.82; H, 4.45; N, 5.62. Found: C, 57.56; H, 4.57; N, 5.43.
Compound 4f: yellowish solid, yield 76%,
mp 132-133 ˚C. IR (KBr): 3055, 2932,
1746, 1721, 1586, 1520, 1345, 1280, 1186, 760, 710 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): d = 3.72
(dd, 1 H, J = 3.9,
2.1 Hz, 2-H), 3.81 (s, 3 H, MeOCO), 4.68 (d, 1 H, J = 3.9
Hz, 3-H), 7.24-8.27 (m, 9Harom), 9.54 (d, 1
H, J = 2.1
Hz, CHO). ¹³C NMR (100 MHz, CDCl3,
TMS): d = 30.6, 52.7, 64.2, 121.6, 124.9, 127.4,
129.2, 129.8, 135.8, 148.2, 149.4, 169.0, 198.3. MS (EI): m/z = 345 [M+].
Anal. Calcd (%) for C17H15NO5S:
C, 59.12; H, 4.38; N, 4.06. Found: C, 59.33; H, 4.74; N, 3.89.
General Procedure
for the Synthesis of Methyl (
E
)-α-Formylcinnamates 2
A
stirred solution of BH alcohols 1 (1 mmol)
and NaNO3 (1 mmol) in 1 mL of [Hmim]HSO4 was
heated at 80 ˚C for 1-3 h (Table
[²]
). The reaction progress
was monitored by TLC. Upon completion, the reaction mixture was
cooled to r.t. and extracted with EtOAc (3 × 10
mL).The combined organic phase was dried over MgSO4,
filtered, and evaporated under reduced pressure. The resulting crude
product was purified by silica gel column chromatography using a
gradient mixture of hexane-EtOAc (8:2) as eluent to give
the pure cinnamates 2. The remaining ionic
liquid was recycled for subsequent runs as described above using
H2SO4 (1 mmol).¹6
Data of Representative Compound
Compound 2a: white solid, yield 80%, mp
91-92 ˚C. IR (KBr): 3076, 2809, 2740,
1724, 1684, 1578, 1462, 1286, 1190, 760, 712 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): δ = 3.87
(s, 3 H, MeOCO), 7.48-7.70 (m, 3 Harom), 7.86
(s, 1 H, CHPh), 8.04-8.12 (m, 2 Harom), 9.66
(s, 1 H, CHO). ¹³C NMR (100 MHz, CDCl3,
TMS): δ = 52.6, 127.7, 129.4, 130.2,
131.3, 134.7, 154.6, 167.9, 187.6. MS (EI):
m/z = 190 [M+].
Anal. Calcd (%) for C11H10O3:
C, 69.46; H, 5.30. Found: C, 69.81; H, 5.14.