Subscribe to RSS
DOI: 10.1055/s-2008-1078549
One-Pot Oxidative Conjugate Hydrothiocyanation-Hydrosulfenylation of Baylis-Hillman Alcohols Promoted by a Protic Ionic Liquid
Publication History
Publication Date:
02 July 2008 (online)

Abstract
The first example of one-pot oxidative conjugate hydrothiocyanation-hydrosulfenylation of acrylic ester derived Baylis-Hillman alcohols, that is, methyl 3-aryl-3-hydroxy-2-methylenepropanoate, is reported. The reaction involves protic ionic liquid [Hmim]HSO4-mediated oxidation of Baylis-Hillman alcohols with NaNO3 to give methyl (E)-α-formylcinnamates followed by conjugate addition of sulfur-centered nucleophiles (NH4SCN/PhSH) to afford the corresponding methyl β-thiocyanato (or β-phenylsulfenyl)-α-formylhydrocinnamates diastereoselectively in 74-87% yields in a one-pot procedure. After isolation of the product, the ionic liquid [Hmim]HSO4 could be easily recycled for further use without any loss of efficiency.
Key words
Baylis-Hillman alcohols - conjugate addition - oxidation - protic ionic liquids - methyl cinnamates - stereoselective synthesis
- 1a
Baylis AB, andHillman MED. inventors; Offenlegungsschrift 2155113. 1972; US 3,743,669, ; Chem. Abstr. 1972, 77, 34174Reference Ris Wihthout Link - 1b
Ciganek E. In Organic Reactions Vol. 51: Wiley; New York: 1997. p.201Reference Ris Wihthout Link - 1c
Ghosh AK.Bilcer G.Schiltz G. Synthesis 2001, 2203Reference Ris Wihthout Link - 2a
Basavaiah D.Rao KV.Reddy RJ. Chem. Soc. Rev. 2007, 36: 1581Reference Ris Wihthout Link - 2b
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811Reference Ris Wihthout Link - 2c
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049Reference Ris Wihthout Link - 2d
Basavaiah D.Rao PD. Tetrahedron 1996, 52: 8001Reference Ris Wihthout Link - 2e
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653Reference Ris Wihthout Link - 3a
Yadav JS.Gupta MK.Pandey SK.Reddy BVS.Sarma AVS. Tetrahedron Lett. 2005, 46: 2761Reference Ris Wihthout Link - 3b
Basavaiah D.Hyma RS.Muthukumaran K.Kumaragurubaran N. Synthesis 2000, 217Reference Ris Wihthout Link - 3c
Roy O.Riahi A.Hénin F.Muzart J. Tetrahedron 2000, 56: 8133Reference Ris Wihthout Link - 3d
Basavaiah D.Satyanarayana T. Tetrahedron Lett. 2002, 43: 4301Reference Ris Wihthout Link - 3e
Kundu MK.Bhat SV. Synth. Commun. 1999, 29: 93Reference Ris Wihthout Link - 3f
Basavaiah D.Bhavani AKD.Pandiaraju S.Sarma PKS. Synlett 1995, 243Reference Ris Wihthout Link - 4a
Basavaiah D.Krishnamacharyulu M.Hyma RS.Sarma PKS.Kumaragurabaran N. J. Org. Chem. 1999, 64: 1197Reference Ris Wihthout Link - 4b
Park DY.Gowarisankar S.Kim JN. Tetrahedron Lett. 2006, 47: 6641Reference Ris Wihthout Link - 4c
Das B.Banerjee J.Chowdhury N.Majhi A.Mahender G. Helv. Chim. Acta 2006, 89: 876Reference Ris Wihthout Link - 4d
Kim JN.Chung YM.Im YJ. Tetrahedron Lett. 2002, 43: 6209Reference Ris Wihthout Link - 4e
Hbaïeb S.Latiri Z.Amri H. Synth. Commun. 1999, 29: 981Reference Ris Wihthout Link - 5a
Liu Y.Xu X.Zheng H.Xu D.Xu Z.Zhang Y. Synlett 2006, 571Reference Ris Wihthout Link - 5b
Srihari P.Singh AP.Jain R.Yadav JS. Synthesis 2006, 2772Reference Ris Wihthout Link - 5c
Das B.Chowdhury N.Damodar K.Banerjee J. Chem. Pharm. Bull. 2007, 55: 1274Reference Ris Wihthout Link - 5d
Kim JN.Kim JM.Lee KY. Synlett 2003, 821Reference Ris Wihthout Link - 5e
Kim JN.Kim HS.Gong JH.Chung YM. Tetrahedron Lett. 2001, 42: 8341Reference Ris Wihthout Link - 6a
Bhuniya D.Gujjary S.Sengupta S. Synth. Commun. 2006, 36: 151Reference Ris Wihthout Link - 6b
Wang W.Yu M. Tetrahedron Lett. 2004, 45: 7141Reference Ris Wihthout Link - 6c
Azizi N.Saidi MR. Tetrahedron Lett. 2002, 43: 4305Reference Ris Wihthout Link - 6d
Kamimura A.Morita R.Matsuura K.Omata Y.Shirai M. Tetrahedron Lett. 2002, 43: 6189Reference Ris Wihthout Link - 7a
Yadav JS.Reddy BVS.Singh AP.Basak AK. Synthesis 2008, 469Reference Ris Wihthout Link - 7b
Yadav JS.Reddy BVS.Singh AP.Basak AK. Tetrahedron Lett. 2007, 48: 4169Reference Ris Wihthout Link - 8a
Fluharty AL. In The Chemistry of the Thiol Group Part 2:Patai S. Wiley; New York: 1974. p.589Reference Ris Wihthout Link - 8b
Clark JH. Chem. Rev. 1980, 80: 429Reference Ris Wihthout Link - 8c
Fujita E.Nagao YJ. Bioorg. Chem. 1977, 6: 287Reference Ris Wihthout Link - 8d
Trost BM.Keeley DE. J. Org. Chem. 1975, 40: 2013Reference Ris Wihthout Link - 8e
Shono T.Matsumura Y.Kashimura S.Hatanaka K. J. Am. Chem. Soc. 1979, 101: 4752Reference Ris Wihthout Link - 8f
Nishimura K.Ono M.Nagaoka Y.Tomioka K. J. Am. Chem. Soc. 1997, 119: 12974Reference Ris Wihthout Link - 9
Patani GA. Chem. Rev. 1996, 96: 3147 - 10a
Kelly TR.Kim MH.Curtis ADM. J. Org. Chem. 1993, 58: 5855Reference Ris Wihthout Link - 10b
Leblanc BL.Jursic BC. Synth. Commun. 1998, 28: 3591Reference Ris Wihthout Link - 10c
Toste FD.Laronde F.Still WJ. Tetrahedron Lett. 1995, 36: 2949Reference Ris Wihthout Link - 10d
Metzer JB. In Comprehensive Heterocyclic Chemistry Vol. 6:Katritzky A. Pergamon; Oxford: 1984. p.235Reference Ris Wihthout Link - 10e
Newman AA. In Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives Academic Press; New York: 1975.Reference Ris Wihthout Link - 11
Mehta RG.Liu J.Constantinou A.Thomas CF.Hawthorne M.You M.Gerhaeusers C.Pezzuto JM.Moon RC.Moriarty RM. Carcinogenesis 1995, 16: 399 - 12
Bakuzis P.Bakuzis MLF. J. Org. Chem. 1981, 46: 235 - 13a
Chowdhury S.Mohan RS.Scott JL. Tetrahedron 2007, 63: 2363Reference Ris Wihthout Link - 13b
Greaves TL.Drummond CJ. Chem. Rev. 2008, 108: 206Reference Ris Wihthout Link - 13c
Bao W.Wang Z. Green Chem. 2006, 8: 1028Reference Ris Wihthout Link - 13d
Zhao D.Wu M.Kou Y.Min E. Catal. Today 2002, 74: 157Reference Ris Wihthout Link - 13e
Dupont J.de Souza RF.Suarez PAZ. Chem. Rev. 2002, 102: 3667Reference Ris Wihthout Link - 13f
Qiao K.Yakoyama C. Chem. Lett. 2004, 33: 472Reference Ris Wihthout Link - 13g
Sun W.Xia C.-G.Wang H.-W. Tetrahedron Lett. 2003, 44: 2409Reference Ris Wihthout Link - 13h
Kamal A.Chouhan G. Tetrahedron Lett. 2005, 46: 1489Reference Ris Wihthout Link - 13i
Earle MJ.Katdare SP.Seddon KR. Org. Lett. 2004, 6: 707Reference Ris Wihthout Link - 14a
Cole AC.Jensen JL.Ntai I.Tran KLT.Weaver KJ.Forbes DC.Davis JH. J. Am. Chem. Soc. 2002, 124: 5962Reference Ris Wihthout Link - 14b
Welton T. Chem. Rev. 1999, 99: 2071Reference Ris Wihthout Link - 14c
Sheldon R. Chem. Commun. 2001, 23: 2399Reference Ris Wihthout Link - 14d
Zhu HP.Yang F.Tang J.He MY. Green Chem. 2003, 5: 38Reference Ris Wihthout Link - 14e
Hajipour AR.Rafiee F.Ruoho AE. Synlett 2007, 1118Reference Ris Wihthout Link - 14f
Zhao G.Jiang T.Gao H.Han B.Huang J.Sun D. Green Chem. 2004, 6: 75Reference Ris Wihthout Link - 15a
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 8037Reference Ris Wihthout Link - 15b
Yadav LDS.Patel R.Rai VK.Srivastava VP. Tetrahedron Lett. 2007, 48: 7793Reference Ris Wihthout Link - 15c
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2007, 1905Reference Ris Wihthout Link - 15d
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455Reference Ris Wihthout Link - 15e
Yadav LDS.Rai VK.Yadav S. Tetrahedron 2006, 62: 5464Reference Ris Wihthout Link - 15f
Yadav LDS.Patel R.Srivastava VP. Synlett 2008, 583Reference Ris Wihthout Link - 15g
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2008, 529Reference Ris Wihthout Link - 17a
Kamimura A.Mitsudera H.Asano S.Kidera S.Kakehi A. J. Org. Chem. 1999, 64: 6353Reference Ris Wihthout Link - 17b
Albertshofer K.Thayumanavan R.Utsumi N.Tanaka F.Barbas CF. Tetrahedron Lett. 2007, 48: 693Reference Ris Wihthout Link - 18a
Miyata O.Shinada T.Naito T.Ninomiya I. Chem. Pharm. Bull. 1989, 37: 3158Reference Ris Wihthout Link - 18b
Miyata O.Shinada T.Ninomiya I.Naito T.Date T.Okamura K.Inagaki S. J. Org. Chem. 1991, 56: 6556Reference Ris Wihthout Link - 18c
Hassan AEA.Nishizono N.Minakawa N.Shuto S.Matsuda A. J. Org. Chem. 1996, 61: 6261Reference Ris Wihthout Link - 18d
Nishimura K.Tomioka K. J. Org. Chem. 2002, 67: 431Reference Ris Wihthout Link - 19
Qian W.Pei L. Synlett 2006, 709 - 20a
Watanabe T.Hayashi K.Yoshimatsu S.Sakai K.Takeyama S.Takashima K. J. Med. Chem. 1980, 23: 50Reference Ris Wihthout Link - 20b
Senokuchi K.Nakai H.Nakayama Y.Odagaki Y.Sakaki K.Kato M.Maruyama T.Miyazaki T.Ito H.Kamiyasu K.Kim S.Kawamura M.Hamanaka N. J. Med. Chem. 1995, 38: 4508Reference Ris Wihthout Link - 21a
Hong WP.Lim HN.Park HW.Lee K.-J. Bull. Korean Chem. Soc. 2005, 26: 655Reference Ris Wihthout Link - 21b
Das B.Banerjee J.Chowdhury N.Majhi A. Chem. Pharm. Bull. 2006, 54: 1725Reference Ris Wihthout Link - 23
Basavaiah D.Hyma RS.Kumaragurubaran N. Tetrahedron 2000, 56: 5905 - 24
Mehdi H.Bodor A.Lantos D.Horváth IT.de Vas DE.Binnemans K. J. Org. Chem. 2007, 72: 1517 - 25
Cai J.Zhou Z.Zhao G.Tang C. Org. Lett. 2002, 4: 4723
References and Notes
General Procedure
for the Synthesis of Methyl β-Thiocyanato-α-formylhydrocinnamates
3 and Methyl β-Phenylsulfenyl-α-formylhydrocinnamates
4
A mixture of BH alcohol 1 (1
mmol) and NaNO3 (1 mmol) was stirred in 1 mL of [Hmim]HSO4 at
80 ˚C for 1-3 h (Table
[²]
). The reaction mixture
was cooled to r.t. and NH4SCN or PhSH (1.1 mmol) was
added. The mixture was further stirred at r.t. for 2-3
h. After completion of the reaction (monitored by TLC), the product
was extracted with EtOAc (3 10 mL). The combined
extract was dried over MgSO4, filtered, concentrated
under reduced pressure, and purified by silica gel column chromatography
(hexane-EtOAc, 8.5:1.5) to afford the desired product 3 or 4. After isolation
of the product, the remaining ionic liquid was washed with Et2O
(2 10 mL) to remove any organic impurity, then
H2SO4 (2.1 mmol in the case of compound 3 and 1 mmol in the case of 4)
was added, the mixture was stirred at 80 ˚C for
1 h, and cooled to about -5 ˚C in an
ice-salt bath. The precipitated solid [Na2SO4,
(NH4)2SO4] was filtered
out, and the filtrate was dried under vacuum to afford the IL [Hmim]HSO4,
which was used in subsequent runs.
Data
of Representative Compounds
Compound 3a:
white solid, yield 78%, mp 104-105 ˚C.
IR (KBr): 3026, 2115, 1745, 1718, 1603, 1578, 1460, 1284, 1194,
764, 714 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): d = 3.68
(dd, 1 H, J = 3.9,
2.1 Hz, 2-H), 3.82 (s, 3 H, MeOCO), 4.86 (d, 1 H, J = 3.9
Hz, 3-H), 7.14-7.32 (m, 5 Harom), 9.56 (d, 1
H, J = 2.1
Hz, CHO). ¹³C NMR (100 MHz, CDCl3,
TMS): d = 36.6, 63.9, 52.8, 112.4, 126.9,
128.6, 129.2, 140.9, 169.1, 198.3. MS (EI): m/z = 249 [M+].
Anal. Calcd (%) for C12H11NO3S:
C, 57.82; H, 4.45; N, 5.62. Found: C, 57.56; H, 4.57; N, 5.43.
Compound 4f: yellowish solid, yield 76%,
mp 132-133 ˚C. IR (KBr): 3055, 2932,
1746, 1721, 1586, 1520, 1345, 1280, 1186, 760, 710 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): d = 3.72
(dd, 1 H, J = 3.9,
2.1 Hz, 2-H), 3.81 (s, 3 H, MeOCO), 4.68 (d, 1 H, J = 3.9
Hz, 3-H), 7.24-8.27 (m, 9Harom), 9.54 (d, 1
H, J = 2.1
Hz, CHO). ¹³C NMR (100 MHz, CDCl3,
TMS): d = 30.6, 52.7, 64.2, 121.6, 124.9, 127.4,
129.2, 129.8, 135.8, 148.2, 149.4, 169.0, 198.3. MS (EI): m/z = 345 [M+].
Anal. Calcd (%) for C17H15NO5S:
C, 59.12; H, 4.38; N, 4.06. Found: C, 59.33; H, 4.74; N, 3.89.
General Procedure
for the Synthesis of Methyl (
E
)-α-Formylcinnamates 2
A
stirred solution of BH alcohols 1 (1 mmol)
and NaNO3 (1 mmol) in 1 mL of [Hmim]HSO4 was
heated at 80 ˚C for 1-3 h (Table
[²]
). The reaction progress
was monitored by TLC. Upon completion, the reaction mixture was
cooled to r.t. and extracted with EtOAc (3 × 10
mL).The combined organic phase was dried over MgSO4,
filtered, and evaporated under reduced pressure. The resulting crude
product was purified by silica gel column chromatography using a
gradient mixture of hexane-EtOAc (8:2) as eluent to give
the pure cinnamates 2. The remaining ionic
liquid was recycled for subsequent runs as described above using
H2SO4 (1 mmol).¹6
Data of Representative Compound
Compound 2a: white solid, yield 80%, mp
91-92 ˚C. IR (KBr): 3076, 2809, 2740,
1724, 1684, 1578, 1462, 1286, 1190, 760, 712 cm-¹. ¹H
NMR (400 MHz, CDCl3, TMS): δ = 3.87
(s, 3 H, MeOCO), 7.48-7.70 (m, 3 Harom), 7.86
(s, 1 H, CHPh), 8.04-8.12 (m, 2 Harom), 9.66
(s, 1 H, CHO). ¹³C NMR (100 MHz, CDCl3,
TMS): δ = 52.6, 127.7, 129.4, 130.2,
131.3, 134.7, 154.6, 167.9, 187.6. MS (EI):
m/z = 190 [M+].
Anal. Calcd (%) for C11H10O3:
C, 69.46; H, 5.30. Found: C, 69.81; H, 5.14.