Abstract
This contribution reviews a family of reactions devised in our laboratory that effect
the oxidative conversion of phenols into 4-amido-dienones. A salient feature of this
chemistry is the use of hypervalent iodine reagents, especially diacetoxyiodobenzene
(DIB), as uniquely capable oxidants in the context of the new transformation. The
advent of this methodology has created new opportunities in alkaloid synthesis. Our
efforts toward FR-901483, TAN-1251C, cylindricine C, and other nitrogenous natural
products illustrate some applications in that domain.
1 Introduction
2 Background
3 First-Generation Oxidative Amidation of Phenols: The Oxazoline Route
4 Initial Applications: Total Synthesis of FR-901483 and of TAN-1251C
5 Second-Generation Oxidative Amidation of Phenols: Sulfonamide Technology
6 Applications: Total Synthesis of (-)-Cylindricine C
7 Third-Generation Solution: The Bimolecular Reaction
8 Conclusion
Key words
phenols - amides - oxidation - hypervalent iodine - alkaloids
References
<A NAME="RE18907SS-1">1 </A>
Sakamoto K.
Tsujii E.
Abe F.
Nakanishi T.
Yamashita M.
Shigematsu N.
Izumi S.
Okuhara M.
J. Antibiot.
1996,
49:
37
<A NAME="RE18907SS-2">2 </A>
Shirafuji H,
Tsubotani S,
Ishimaru T, and
Harada S. inventors; Int. Patent PCT WO91/13887.
For alternative avenues to these substances, see:
<A NAME="RE18907SS-3A">3a </A>
Snider BB.
Lin H.
J. Am. Chem. Soc.
1999,
121:
7778
<A NAME="RE18907SS-3B">3b </A>
Snider BB.
Lin H.
Org. Lett.
2000,
2:
643
<A NAME="RE18907SS-3C">3c </A>
Maeng J.-H.
Funk RL.
Org. Lett.
2001,
3:
1125
<A NAME="RE18907SS-3D">3d </A>
Kan T.
Fujimoto T.
Ieda S.
Asoh Y.
Kitaoka H.
Fukuyama T.
Org. Lett.
2004,
6:
2729
<A NAME="RE18907SS-3E">3e </A>
Brummond KM.
Hong S.
J. Org. Chem.
2005,
70:
907
<A NAME="RE18907SS-3F">3f </A> For synthetic studies see:
Simila STM.
Martin SF.
J. Org. Chem.
2007,
72:
5342 ; and references cited therein
<A NAME="RE18907SS-4">4 </A>
Kikugawa Y.
Kawase M.
J. Am. Chem. Soc.
1984,
106:
5728
<A NAME="RE18907SS-5A">5a </A>
Glover SA.
Goosen A.
McCleland CW.
Schoonraad JL.
J. Chem. Soc., Perkin Trans. 1
1984,
2255
<A NAME="RE18907SS-5B">5b </A>
Glover SA.
Scott AP.
Tetrahedron
1989,
45:
1763
<A NAME="RE18907SS-6">6 </A>
Kawase M.
Kitamura T.
Kikugawa Y.
J. Org. Chem.
1989,
54:
3394
Reviews:
<A NAME="RE18907SS-7A">7a </A>
Moriarty RM.
J. Org. Chem.
2005,
70:
2893
<A NAME="RE18907SS-7B">7b </A>
Wirth T.
Angew. Chem. Int. Ed.
2005,
44:
3656
<A NAME="RE18907SS-7C">7c </A>
Hamamoto H.
Anilkumar G.
Tohma H.
Kita Y.
Chem. Eur. J.
2002,
8:
5377
<A NAME="RE18907SS-7D">7d </A>
Zhdankin VV.
Stang PJ.
Chem. Rev.
2002,
102:
2523
<A NAME="RE18907SS-7E">7e </A>
Moriarty RM.
Org. React. (N.Y.)
2001,
57:
327
<A NAME="RE18907SS-7F">7f </A>
Varvogolis A.
Hypervalent Iodine in Organic Synthesis
Academic Press;
San Diego CA:
1997.
<A NAME="RE18907SS-7G">7g </A>
Zhdankin VV.
Stang PJ.
Chem. Rev.
1996,
96:
1123
<A NAME="RE18907SS-8A">8a </A>
Kikugawa Y.
Kawase M.
Chem. Lett.
1990,
581
<A NAME="RE18907SS-8B">8b </A>
Kikugawa Y.
Shimada M.
Matsumoto K.
Heterocycles
1994,
37:
293
<A NAME="RE18907SS-9A">9a </A>
Wardrop DJ.
Burge MS.
J. Org. Chem.
2005,
70:
10271
<A NAME="RE18907SS-9B">9b </A>
Wardrop DJ.
Zhang W.
Landrie CL.
Tetrahedron Lett.
2004,
45:
4229
<A NAME="RE18907SS-9C">9c </A>
Wardrop DJ.
Burge MS.
Chem. Commun.
2004,
1230
<A NAME="RE18907SS-9D">9d </A>
Wardrop DJ.
Landrie CL.
Ortiz JA.
Synlett
2003,
1352
<A NAME="RE18907SS-9E">9e </A>
Wardrop DJ.
Burge MS.
Zhang W.
Ortiz JA.
Tetrahedron Lett.
2003,
44:
2587
<A NAME="RE18907SS-9F">9f </A>
Wardrop DJ.
Zhang W.
Org. Lett.
2001,
3:
2353
<A NAME="RE18907SS-9G">9g </A>
Wardrop DJ.
Basak A.
Org. Lett.
2001,
3:
1053
<A NAME="RE18907SS-10A">10a </A>
Clemente D.-T.
Lobo AM.
Prabhakar S.
Marcelo-Curto MJ.
Tetrahedron Lett.
1994,
35:
2043
<A NAME="RE18907SS-10B">10b </A> Review:
Prata JV.
Clemente D.-TS.
Prabhakar S.
Lobo AM.
Mourato I.
Branco PS.
J. Chem. Soc., Perkin Trans. 1
2002,
513
<A NAME="RE18907SS-11">11 </A>
Kikugawa Y.
Nagashima A.
Sakamoto T.
Miyazawa E.
Shiiya M.
J. Org. Chem.
2003,
68:
6739
<A NAME="RE18907SS-12">12 </A> See, for example:
Yamamura S.
Chemistry of Phenols
Vol. 2:
Rappoport Z.
John Wiley & Sons;
Chichester:
2003.
p.1153-1346
In particular:
<A NAME="RE18907SS-13A">13a </A> Usnic acid:
Barton DHR.
Deflorin AM.
Edwards OE.
J. Chem. Soc.
1956,
530
<A NAME="RE18907SS-13B">13b </A> Galanthamine:
Barton DHR.
Kirby GW.
J. Chem. Soc.
1962,
806
<A NAME="RE18907SS-13C">13c </A> For a review, see:
Barton DHR.
Pure Appl. Chem.
1964,
9:
35
Significant contributions by other groups:
<A NAME="RE18907SS-14A">14a </A>
Kametani T.
Fukumoto K.
Yakugaku Kenkyu
1963,
35:
426
<A NAME="RE18907SS-14B">14b </A>
Scott AI.
McCapra F.
Buchanan RL.
Day AC.
Young DW.
Tetrahedron
1965,
21:
3605
<A NAME="RE18907SS-15">15 </A> An excellent survey of the various oxidizing agents that have been employed for
the activation of phenols is provided in:
Rodríguez S.
Wipf P.
Synthesis
2004,
2767
<A NAME="RE18907SS-16A">16a </A>
Tamura Y.
Yakura T.
Haruta J.
Kita Y.
J. Org. Chem.
1987,
52:
3927
<A NAME="RE18907SS-16B">16b </A>
Kita Y.
Tohma H.
Kikuchi K.
Inagaki M.
Yakura T.
J. Org. Chem.
1991,
56:
435
<A NAME="RE18907SS-17">17 </A>
Pelter A.
Elgendy S.
Tetrahedron Lett.
1988,
29:
677
<A NAME="RE18907SS-18">18 </A>
Barret R.
Daundon M.
Tetrahedron Lett.
1991,
32:
2133
<A NAME="RE18907SS-19">19 </A> Review:
Kita Y.
Fujioka H.
Pure Appl. Chem.
2007,
79:
701
<A NAME="RE18907SS-20">20 </A>
Wipf P.
Spencer SR.
J. Am. Chem. Soc.
2005,
127:
225
<A NAME="RE18907SS-21">21 </A>
Wipf P.
Jung J.-K.
Chem. Rev.
1999,
99:
1469
<A NAME="RE18907SS-22A">22a </A>
Knapp S.
Gibson FS.
Org. Synth.
1992,
70:
101
<A NAME="RE18907SS-22B">22b </A>
Knapp S. In Advances in Heterocyclic Natural Product Synthesis
Vol. 3:
Pearson WH.
JAP Press;
Greenwich CT:
1996.
Chap. 2.
Imidates and congeners react at the nitrogen atom with a variety of electrophiles:
<A NAME="RE18907SS-23A">23a </A> Tennant G.; In Comprehensive Organic Chemistry ; Barton D. H. R., Ollis W. D.; Pergamon Press: Oxford, 1979; Vol. 2: Chap. 8, 385-590;
see especially page 490 onwards
<A NAME="RE18907SS-23B">23b </A>
Kantlehner W. In
Comprehensive Organic Synthesi s
Vol. 6:
Trost BM.
Pergamon Press;
Oxford:
1991.
Chap. 2.7.
p.pp 485-599 ; see especially page 529 onwards
<A NAME="RE18907SS-24A">24a </A>
Vorbrüggen H.
Krolikiewicz K.
Tetrahedron Lett.
1981,
22:
4471
<A NAME="RE18907SS-24B">24b </A>
Vorbrüggen H.
Krolikiewicz K.
Tetrahedron
1993,
49:
9353
<A NAME="RE18907SS-25">25 </A> O-Protection of the phenol, by contrast, was essential during assembly of the
oxazoline by alternative techniques, such as the Wipf synthesis:
Wipf P.
Miller CP.
Tetrahedron Lett.
1992,
33:
907
<A NAME="RE18907SS-26">26 </A> This stereochemical assignment rests upon X-ray crystallography:
Peters K.
Peters E.-M.
Braun NA.
Ciufolini MA.
Z. Kristallogr. NCS
1999,
214:
555
See:
<A NAME="RE18907SS-27A">27a </A>
Chow YL.
Colón CJ.
Tan JNS.
Can. J. Chem.
1968,
46:
2821
<A NAME="RE18907SS-27B">27b </A>
Lunazzi L.
Cerioni G.
Foresti E.
Macciantelli D.
J. Chem. Soc., Perkin Trans. 2
1980,
717
<A NAME="RE18907SS-27C">27c </A>
Johnson F.
Chem. Rev.
1968,
68:
375
<A NAME="RE18907SS-28">28 </A>
Braun NA.
Ciufolini MA.
Peters K.
Peters E.-M.
Tetrahedron Lett.
1998,
39:
4667
Similar reactions in which a carbonyl group intercepts the electrophilic agent produced
upon activation of the phenol are know and are synthetically useful:
<A NAME="RE18907SS-29A">29a </A>
Wong Y.-S.
Chem. Commun.
2002,
686
<A NAME="RE18907SS-29B">29b </A>
Peuchmaur M.
Wong Y.-S.
J. Org. Chem.
2007,
72:
5374
<A NAME="RE18907SS-30">30 </A>
Braun NA.
Ousmer M.
Bray JD.
Bouchu D.
Peters K.
Peters E.-M.
Ciufolini MA.
J. Org. Chem.
2000,
65:
4397
<A NAME="RE18907SS-31">31 </A>
Dohi T.
Morimoto K.
Maruyama A.
Kita Y.
Org. Lett.
2006,
8:
2007
<A NAME="RE18907SS-32">32 </A>
Hata K.
Hamamoto H.
Shiozaki Y.
Kita Y.
Chem. Commun.
2005,
2465
<A NAME="RE18907SS-33">33 </A>
Scheffler G.
Seike H.
Sorensen EJ.
Angew. Chem. Int. Ed.
2000,
39:
4593
<A NAME="RE18907SS-34">34 </A>
Mizutani H.
Takayama J.
Soeda Y.
Honda T.
Tetrahedron Lett.
2002,
43:
2411
<A NAME="RE18907SS-35">35 </A>
Canesi, S. unpublished work from these laboratories.
<A NAME="RE18907SS-36">36 </A> Compare with:
Aubart KM.
Heathcock CH.
J. Org. Chem.
1999,
64:
16
<A NAME="RE18907SS-37">37 </A>
Schülé, A. unpublished work from these laboratories.
<A NAME="RE18907SS-38">38 </A> Review:
Tsuda Y.
Sano T.
The Alkaloids
Vol. 48:
Brossi A.
Cordell GA.
Academic Press;
Orlando:
1996.
p.249
<A NAME="RE18907SS-39">39 </A>
Dong Q.
Anderson CE.
Ciufolini MA.
Tetrahedron Lett.
1995,
36:
5681
<A NAME="RE18907SS-40">40 </A>
Ousmer M.
Braun NA.
Bavoux C.
Perrin M.
Ciufolini MA.
J. Am. Chem. Soc.
2001,
123:
7534
Two excellent reviews on cylindricines and related compounds have recently appeared:
<A NAME="RE18907SS-41A">41a </A>
Dake G.
Tetrahedron
2006,
62:
3467
<A NAME="RE18907SS-41B">41b </A>
Weinreb SM.
Chem. Rev.
2006,
106:
2531
<A NAME="RE18907SS-42">42 </A> See:
Ciufolini MA.
Hermann CYW.
Dong Q.
Shimizu T.
Swaminathan S.
Xi N.
Synlett
1998,
105
<A NAME="RE18907SS-43">43 </A> Review:
Kan T.
Fukuyama T.
Chem. Commun.
2004,
353
<A NAME="RE18907SS-44A">44a </A>
Canesi S.
Belmont P.
Bouchu D.
Rousset L.
Ciufolini MA.
Tetrahedron Lett.
2002,
43:
5193
<A NAME="RE18907SS-44B">44b </A>
Canesi S.
Bouchu D.
Ciufolini MA.
Angew. Chem. Int. Ed.
2004,
43:
4336
<A NAME="RE18907SS-45">45 </A>
Drutu I.
Njardson J.
Wood J.
Org. Lett.
2002,
4:
493
<A NAME="RE18907SS-46A">46a </A>
Hutchins RO.
Su WY.
Sivakumar R.
Cistone F.
Stercho YP.
J. Org. Chem.
1983,
48:
3412
<A NAME="RE18907SS-46B">46b </A>
Stevens RV.
Acc. Chem. Res.
1984,
17:
289
<A NAME="RE18907SS-47">47 </A>
Evans DA.
Gauchet-Prunet JA.
Carreira EM.
Charette AB.
J. Org. Chem.
1991,
56:
741 ; and references cited therein
Reviews:
<A NAME="RE18907SS-48A">48a </A>
Gribble GW.
Org. Process Res. Dev.
2006,
10:
1062
<A NAME="RE18907SS-48B">48b </A>
Abdel-Magid AF.
Mehrman SJ.
Org. Process Res. Dev.
2006,
10:
971
<A NAME="RE18907SS-48C">48c </A>
Gribble GW.
Chem. Soc. Rev.
1998,
27:
395
<A NAME="RE18907SS-49">49 </A>
Kita Y.
Takada T.
Gyoten M.
Tohma H.
Zenk MH.
Eichhorn J.
J. Org. Chem.
1996,
61:
5857
<A NAME="RE18907SS-50">50 </A>
Canesi S.
Bouchu D.
Ciufolini MA.
Org. Lett.
2005,
7:
175
<A NAME="RE18907SS-51">51 </A> Under these conditions, products arising from capture of the electrophilic intermediate
by the azido functionality were not detected; compare with:
Kita Y.
Egi M.
Okajima A.
Ohtsubo M.
Takada T.
Tohma H.
Chem. Commun.
1996,
1491
<A NAME="RE18907SS-52">52 </A>
Mendelsohn, B.; Ciufolini, M. A. unpublished work.
<A NAME="RE18907SS-53">53 </A> Review:
Livinghouse T.
Tetrahedron
1999,
55:
9947
<A NAME="RE18907SS-54">54 </A> Review:
Sinclair A.
Stockman RA.
Nat. Prod. Rep.
2007,
24:
298
In addition to refs. 7, 12, 22, 23, and 40, see:
<A NAME="RE18907SS-55A">55a </A>
Kita Y.
Takada T.
Gyoten M.
Tohma H.
Zenk MH.
Eichhorn J.
J. Org. Chem.
1996,
61:
5854
<A NAME="RE18907SS-55B">55b </A>
Kita Y.
Gyoten M.
Ohtsubo M.
Tohma H.
Takada T.
Chem. Commun.
1996,
1481
<A NAME="RE18907SS-55C">55c </A>
Takada T.
Arisawa M.
Gyoten M.
Hamada R.
Tohma H.
Kita Y.
J. Org. Chem.
1998,
63:
7698
<A NAME="RE18907SS-55D">55d </A>
Arisawa M.
Utsumi S.
Nakajima M.
Ramesh NG.
Tohma H.
Kita Y.
Chem. Commun.
1999,
469
<A NAME="RE18907SS-55E">55e </A>
Tohma H.
Morioka H.
Takizawa S.
Arisawa M.
Kita Y.
Tetrahedron
2001,
345
<A NAME="RE18907SS-55F">55f </A>
Tohma H.
Iwata M.
Maegawa T.
Kita Y.
Tetrahedron Lett.
2002,
43:
9241
<A NAME="RE18907SS-55G">55g </A>
Dohi T.
Morimoto K.
Kiyono Y.
Maruyama A.
Tohma H.
Kita Y.
Chem. Commun.
2005,
2930
<A NAME="RE18907SS-56">56 </A>
Dohi T.
Maruyama A.
Minamitsuji Y.
Takenaga N.
Kita Y.
Chem. Commun.
2007,
1224
<A NAME="RE18907SS-57">57 </A>
Jean A.
Cantat J.
Berard D.
Bouchu D.
Canesi S.
Org. Lett.
2007,
9:
2553