Abstract
Since its introduction into organic chemistry more than fifty years ago, RuO4 has been used mainly as a strong oxidizing agent. Owing to its high reactivity, catalytic
reactions employing RuO4 were often considered to be sluggish or unselective. However, within the past ten
years, several groups have reported the development of new and selective oxidative
transformations possible only under RuO4 catalysis. The present article summarizes the state of research in this field and
tries to give a systematic overview of the reactivity and the reaction mode of RuO4. In the final section, relative reactivities between olefins or olefins and functional
groups are discussed. The information provided in the present paper might serve as
a good starting point for chemists interested in applying RuO4-catalyzed reactions in organic synthesis or methodology.
-
1 Introduction
-
1.1 Historical Development
-
1.2 Chemical Properties
-
2 Oxidation of C-H Bonds
-
2.1 Oxidation of C-H Bonds α to a Heteroatom
-
2.2 Oxidation of Saturated Hydrocarbons
-
3 Oxygen Transfer to Alkenes
-
3.1 Dihydroxylation and Ketohydroxylation
-
3.2 Oxidative Cyclization of Polyenes
-
4 Cleavage Reactions
-
4.1 Oxidative Cleavage of Single Bonds
-
4.2 Oxidative Cleavage of Double Bonds
-
4.2.1 Fragmentation of Alkenes
-
4.2.2 Oxidation of Aromatic Compounds
-
4.3 Oxygen Transfer to Alkynes
-
5 Oxidation of Heteroatoms
-
6 Reactivity Aspects
-
7 Conclusions
Key words
ruthenium - oxidations - catalysis - oxygen - oxygenation
References
<A NAME="RE13405SS-1">1</A>
Carbohydrate-based Drug Discovery
Wong C.-H.
Wiley-VCH;
Weinheim:
2003.
<A NAME="RE13405SS-2A">2a</A>
Marquez-Alvarez C.
Sastre E.
Perez-Pariente J.
Top. Catal.
2004,
27:
105 ; and references cited therein
<A NAME="RE13405SS-2B">2b</A>
Uhrich KE.
Cannizzaro SM.
Langer RS.
Shakesheff KM.
Chem. Rev.
1999,
99:
3181
<A NAME="RE13405SS-3">3</A>
Modern Oxidation Methods
Bäckvall J.-E.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RE13405SS-4">4</A>
Metal-catalyzed Oxidations of Organic Compounds
Sheldon R.
Kochi JK.
Academic Press;
New York:
1981.
<A NAME="RE13405SS-5">5</A>
Djerassi C.
Engle RR.
J. Am. Chem. Soc.
1953,
75:
3838
<A NAME="RE13405SS-6">6</A>
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
<A NAME="RE13405SS-7">7</A>
Piccialli V.
Smaldone DMA.
Sica D.
Tetrahedron
1993,
49:
4211
<A NAME="RE13405SS-8A">8a</A>
Shing TKM.
Tai VW.-F.
Tam EKW.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2312 ; Angew. Chem. 1994, 106, 2408
<A NAME="RE13405SS-8B">8b</A>
Shing TKM.
Tam EKW.
Tai VWF.
Chung IHF.
Jiang Q.
Chem. Eur. J.
1996,
2:
50
<A NAME="RE13405SS-9">9</A> There was an early remark by Sharpless indicating that they managed to perform
a dihydroxylation using RuO4, albeit in low yield:
Sharpless KB.
Akashi K.
J. Am. Chem. Soc.
1976,
98:
1986 ; see ref. 3 therein
<A NAME="RE13405SS-10">10</A>
Piccialli V.
Sica D.
Smaldone D.
Tetrahedron Lett.
1995,
35:
7093
<A NAME="RE13405SS-11A">11a</A>
Albarella L.
Lasalvia M.
Piccialli V.
Sica D.
J. Chem. Soc., Perkin Trans. 2
1998,
737
<A NAME="RE13405SS-11B">11b</A>
Albarella L.
Piccialli V.
Smaldone D.
Sica D.
J. Chem. Res., Miniprint
1996,
2442
<A NAME="RE13405SS-11C">11c</A>
Albarella L.
Piccialli V.
Smaldone D.
Sica D.
J. Chem. Res., Synop.
1996,
400
<A NAME="RE13405SS-12A">12a</A>
Martin VS.
Palazon JM.
Rodriguez CM. In Oxidizing and Reducing Agents - Handbook of Reagents for Organic Synthesis
Burke SD.
Danheiser RL.
Wiley-VCH;
Weinheim:
1999.
p.346
<A NAME="RE13405SS-12B">12b</A>
Courtney JL. In
Organic Syntheses by Oxidation with Metal Compounds
Mijs WJ.
de Jonge CRHI.
Plenum Press;
New York, London:
1986.
p.445
<A NAME="RE13405SS-13A">13a</A>
Wolfe S.
Hasan SK.
Campbell JR.
J. Chem. Soc., Chem. Commun.
1970,
1420
<A NAME="RE13405SS-13B">13b</A>
Gopal H.
Gordon AJ.
Tetrahedron Lett.
1971,
2941
<A NAME="RE13405SS-14A">14a</A>
Berkowitz LM.
Rylander PN.
J. Am. Chem. Soc.
1958,
80:
6682
<A NAME="RE13405SS-14B">14b</A>
Yamamoto Y.
Suzuki H.
Morooka Y.
Tetrahedron Lett.
1985,
26:
2107
<A NAME="RE13405SS-15A">15a</A>
Schröder M.
Griffith WP.
J. Chem. Soc., Chem. Commun.
1979,
58
<A NAME="RE13405SS-15B">15b</A>
Paquette LA.
Dressel J.
Pansegran PD.
Tetrahedron Lett.
1992,
33:
7719
<A NAME="RE13405SS-16">16</A>
Bailey AJ.
Griffith WP.
Marsden SP.
White AJP.
Williams DJ.
J. Chem. Soc., Dalton Trans.
1998,
3673
<A NAME="RE13405SS-17">17</A>
Giddings S.
Mills A.
J. Org. Chem.
1988,
53:
1103
<A NAME="RE13405SS-18">18</A>
Paquette LA.
Dressel J.
Pansegrau PD.
Tetrahedron Lett.
1987,
28:
4965
<A NAME="RE13405SS-19">19</A>
Connick RE.
Hurley CR.
J. Am. Chem. Soc.
1952,
74:
5012
<A NAME="RE13405SS-20">20</A>
The Chemistry of Ruthenium
Seddon EA.
Seddon KR.
Elsevier;
Amsterdam:
1984.
<A NAME="RE13405SS-21">21</A>
Dehand J.
Rosé J.
J. Chem. Res.
1979,
155
<A NAME="RE13405SS-22">22</A>
Boelrijk AEM.
Reedijk J.
J. Mol. Catal.
1994,
89:
63
<A NAME="RE13405SS-23">23</A>
Griffith WP.
Suriaatmaja M.
Can. J. Chem.
2001,
79:
598
<A NAME="RE13405SS-24">24</A>
Mills A.
Holland C.
J. Chem. Res.
1997,
368
<A NAME="RE13405SS-25">25</A>
Griffith WP.
Ley SV.
Whitcombe GP.
White AD.
J. Chem. Soc., Chem. Commun.
1987,
1625
<A NAME="RE13405SS-26">26</A>
Beattie JK.
Pure Appl. Chem.
1990,
62:
1145 ; and references cited therein
<A NAME="RE13405SS-27">27</A>
Hudlick M.
Oxidations in Organic Chemistry, ACS Monograph 186
American Chemical Society;
Washington:
1990.
p.114
<A NAME="RE13405SS-28">28</A>
Pastó M.
Castejón P.
Moyano A.
Pericàs MA.
Riera A.
J. Org. Chem.
1996,
61:
6033
<A NAME="RE13405SS-29A">29a</A>
Plietker B.
Niggemann M.
Org. Lett.
2003,
5:
3353
<A NAME="RE13405SS-29B">29b</A>
Plietker B.
Niggemann M.
Pollrich A.
Org. Biomol. Chem.
2004,
2:
1116
<A NAME="RE13405SS-30">30</A>
Niwa H.
Ito S.
Hasegawa T.
Wakamatsu K.
Mori T.
Yamada K.
Tetrahedron Lett.
1991,
32:
1329
<A NAME="RE13405SS-31A">31a</A>
Nutt RF.
Arison B.
Holly FW.
Walton E.
J. Am. Chem. Soc.
1965,
87:
3272
<A NAME="RE13405SS-31B">31b</A>
Nutt RF.
Dickinson MJ.
Holly FW.
Walton E.
J. Org. Chem.
1968,
33:
1789
<A NAME="RE13405SS-31C">31c</A>
Beynon PJ.
Collins PM.
Overend WG.
Proc. Chem. Soc., London
1964,
342
<A NAME="RE13405SS-32">32</A>
Caputo JA.
Fuchs R.
Tetrahedron Lett.
1967,
4729
<A NAME="RE13405SS-33">33</A>
Meyer K.
Rocek J.
J. Am. Chem. Soc.
1972,
94:
1209
<A NAME="RE13405SS-34">34</A>
Lee DG.
Spitzer UA.
Cleland J.
Olson ME.
Can. J. Chem.
1976,
54:
2124
<A NAME="RE13405SS-35">35</A>
Yamaoka H.
Moriya N.
Ikunaka M.
Org. Process Res. Dev.
2004,
8:
931
<A NAME="RE13405SS-36">36</A>
Felix AM.
Earley JV.
Fryer RI.
Sternbach LH.
J. Heterocycl. Chem.
1968,
5:
731
<A NAME="RE13405SS-37">37</A>
Deng L.
Ziegler T.
Organometallics
1997,
16:
716
<A NAME="RE13405SS-38">38</A>
Plietker B.
Org. Lett.
2004,
6:
289
For the asymmetric α-hydroxylation of ketones, see:
<A NAME="RE13405SS-39A">39a</A>
Morikawa K.
Park J.
Andersson PG.
Hashiyama T.
Sharpless KB.
J. Am. Chem. Soc.
1993,
115:
8463
<A NAME="RE13405SS-39B">39b</A>
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2003,
125:
6038
<A NAME="RE13405SS-39C">39c</A>
Brown SP.
Brochu MP.
Sinz CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
10808
<A NAME="RE13405SS-39D">39d</A>
Zhoung G.
Angew. Chem. Int. Ed.
2003,
42:
4247 ; Angew. Chem. 2003, 115, 4379
<A NAME="RE13405SS-39E">39e</A>
Bogevig A.
Sundén H.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
1109 ; Angew. Chem. 2004, 116, 1129
<A NAME="RE13405SS-39F">39f</A>
Hayashi Y.
Yamaguchi J.
Sumiya T.
Shoji M.
Angew. Chem. Int. Ed.
2004,
43:
1112 ; Angew. Chem. 2004, 116, 1132
For the asymmetric acyloin condensation, see:
<A NAME="RE13405SS-40A">40a</A>
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743 ; Angew. Chem. 2002, 114, 1822
<A NAME="RE13405SS-40B">40b</A>
Dünkelmann P.
Kolter-Jung D.
Nitsche A.
Demir AS.
Siegert P.
Lingen B.
Baumann M.
Pohl M.
Müller M.
J. Am. Chem. Soc.
2002,
124:
12084
<A NAME="RE13405SS-40C">40c</A>
Demir AS.
Sesenoglu O.
Eren E.
Hosrik B.
Pohl M.
Janzen E.
Kolter D.
Feldmann R.
Duenkelmann P.
Müller M.
Adv. Synth. Catal.
2002,
1:
96 ; and references cited therein
<A NAME="RE13405SS-41">41</A>
Booker-Milburn KI.
Cowell JK.
Tetrahedron Lett.
1996,
37:
2177
<A NAME="RE13405SS-42A">42a</A>
Schuda PF.
Cichowicz MB.
Heimann MR.
Tetrahedron Lett.
1983,
24:
3829
<A NAME="RE13405SS-42B">42b</A>
Takeda R.
Zask A.
Nakanishi K.
Park MH.
J. Am. Chem. Soc.
1987,
109:
914
<A NAME="RE13405SS-43">43</A>
Nevill CR.
Angell PT.
Tetrahedron Lett.
1998,
39:
5671
<A NAME="RE13405SS-44">44</A>
Lin G.
Midha KK.
Hawes EM.
J. Heterocycl. Chem.
1991,
28:
215
<A NAME="RE13405SS-45">45</A>
Tanaka K.-I.
Sawanishi H.
Tetrahedron: Asymmetry
1998,
9:
71
<A NAME="RE13405SS-46A">46a</A>
Hernández R.
Suarez E.
J. Org. Chem.
1994,
59:
2766
<A NAME="RE13405SS-46B">46b</A>
U JS.
Park HS.
Gupta S.
Cha JK.
Synth. Commun.
1997,
27:
2931
<A NAME="RE13405SS-47">47</A>
Bakke JM.
Frøhaug AE.
J. Phys. Org. Chem.
1996,
9:
310
<A NAME="RE13405SS-48A">48a</A>
Tenaglia A.
Terranova E.
Waegell B.
J. Chem. Soc., Chem. Commun.
1990,
1344
<A NAME="RE13405SS-48B">48b</A>
Bakke JM.
Bränden JE.
Acta Chem. Scand.
1991,
45:
418
<A NAME="RE13405SS-48C">48c</A>
Tenaglia A.
Terranova E.
Waegell B.
J. Org. Chem.
1992,
57:
5523
<A NAME="RE13405SS-49">49</A>
Coudret JL.
Waegell B.
Inorg. Chim. Acta
1994,
222:
115
<A NAME="RE13405SS-50">50</A>
Carlsen PHJ.
Synth. Commun.
1987,
17:
19
<A NAME="RE13405SS-51">51</A>
Coudret JL.
Zöllner S.
Ravoo BJ.
Malara L.
Hanisch C.
Dörre K.
de Meijere A.
Waegell B.
Tetrahedron Lett.
1996,
37:
2425
<A NAME="RE13405SS-52">52</A>
Sica D.
Recent Res. Dev. Org. Chem.
2003,
7:
105 ; and references cited therein
<A NAME="RE13405SS-53">53</A>
Notaro D.
Piccialli V.
Sica D.
Smaldone D.
Tetrahedron
1994,
50:
4835
<A NAME="RE13405SS-54">54</A> An interesting application in the total synthesis of brassinolide was recently
published:
Massey AP.
Pore VS.
Hazra BG.
Synthesis
2003,
426
<A NAME="RE13405SS-55">55</A>
Friedrich M.
Savchenko AI.
Wächtler A.
de Meijere A.
Eur. J. Org. Chem.
2003,
2138
<A NAME="RE13405SS-56A">56a</A>
Angermann J.
Homann K.
Reissig H.-U.
Zimmer R.
Synlett
1995,
1014
<A NAME="RE13405SS-56B">56b</A>
Zimmer R.
Homann K.
Angermann J.
Reissig H.-U.
Synthesis
1999,
1223
<A NAME="RE13405SS-57">57</A>
Plietker B.
Niggemann M.
J. Org. Chem.
2005,
70:
2402
<A NAME="RE13405SS-58">58</A>
Couturier M.
Andresen BM.
Jorgensen JB.
Tucker JL.
Busch FR.
Brenek SJ.
Dubé P.
am Ende DJ.
Negri JT.
Org. Process Res. Dev.
2002,
6:
42
<A NAME="RE13405SS-59">59</A>
Laux M.
Krause N.
Synlett
1997,
765
<A NAME="RE13405SS-60">60</A>
Khan FA.
Prabhundas B.
Dash J.
Sahu N.
J. Am. Chem. Soc.
2000,
122:
9558
<A NAME="RE13405SS-61A">61a</A>
Plietker B.
J. Org. Chem.
2003,
68:
7123
<A NAME="RE13405SS-61B">61b</A>
Plietker B.
J. Org. Chem.
2004,
69:
8287
<A NAME="RE13405SS-61C">61c</A>
Plietker B.
Eur. J. Org. Chem.
2005,
1919
<A NAME="RE13405SS-62">62</A>
Plietker B.
Niggemann M.
Org. Biomol. Chem.
2004,
2:
2403
<A NAME="RE13405SS-63A">63a</A>
Cha JK.
Christ WJ.
Kishi Y.
Tetrahedron
1984,
40:
2247
<A NAME="RE13405SS-63B">63b</A>
Cha JK.
Kim N.-S.
Chem. Rev.
1995,
95:
1761
<A NAME="RE13405SS-64A">64a</A>
Stork G.
Kahn M.
Tetrahedron Lett.
1983,
24:
3951
<A NAME="RE13405SS-64B">64b</A>
Houk KN.
Moses SR.
Wu Y.-D.
Rondan NG.
Jäger V.
Schohe R.
Fronczek FR.
J. Am. Chem. Soc.
1984,
106:
3880
<A NAME="RE13405SS-64C">64c</A>
Vedejs E.
McClure CK.
J. Am. Chem. Soc.
1986,
108:
1094
<A NAME="RE13405SS-64D">64d</A> For a detailed comparison based upon DFT calculation, see:
Haller J.
Strassner T.
Houk KN.
J. Am. Chem. Soc.
1997,
119:
8031
<A NAME="RE13405SS-65">65</A>
Frunzke J.
Loschen C.
Frenking G.
J. Am. Chem. Soc.
2004,
126:
3642
<A NAME="RE13405SS-66">66</A>
Strassner T.
Drees M.
J. Mol. Structure - THEOCHEM
2004,
671:
197
<A NAME="RE13405SS-67A">67a</A>
Piccialli V.
Cavallo N.
Tetrahedron Lett.
2001,
42:
4695
<A NAME="RE13405SS-67B">67b</A>
Bifulco G.
Caserta T.
Gomez-Paloma L.
Piccialli V.
Tetrahedron Lett.
2002,
43:
9265
<A NAME="RE13405SS-67C">67c</A>
Bifulco G.
Caserta T.
Gomez-Paloma L.
Piccialli V.
Tetrahedron Lett.
2003,
44:
5499
<A NAME="RE13405SS-68">68</A>
Albarella L.
Musumeci D.
Sica D.
Eur. J. Org. Chem.
2001,
997
<A NAME="RE13405SS-69">69</A>
Roth S.
Göhler S.
Cheng H.
Stark CBW.
Eur. J. Org. Chem.
2005, in press
<A NAME="RE13405SS-70">70</A>
Piccialli V.
Tetrahedron Lett.
2000,
41:
3731
<A NAME="RE13405SS-71">71</A>
Martin VS.
Nunez MT.
Tonn CE.
Tetrahedron Lett.
1988,
29:
2701
<A NAME="RE13405SS-72">72</A>
Wang GT.
Wang S.
Chen Y.
Gentles R.
Sowin T.
J. Org. Chem.
2001,
66:
2052
<A NAME="RE13405SS-73">73</A>
Ranganathan D.
Saini S.
J. Am. Chem. Soc.
1991,
113:
1042
<A NAME="RE13405SS-74">74</A>
Ferraz HMC.
Longo LS.
Org. Lett.
2003,
5:
1337
<A NAME="RE13405SS-75A">75a</A>
Mori K.
Miyake M.
Tetrahedron
1987,
43:
2229
<A NAME="RE13405SS-75B">75b</A>
Smith AB.
Scarborough RM.
Synth. Commun.
1980,
10:
205
<A NAME="RE13405SS-76">76</A>
Wolfe S.
Hasan SK.
Campbell JR.
J. Chem. Soc., Chem. Commun.
1970,
1420
<A NAME="RE13405SS-77">77</A>
Yang D.
Zhang C.
J. Org. Chem.
2001,
66:
4814
<A NAME="RE13405SS-78">78</A>
Mehta G.
Krishnamurthy N.
J. Chem. Soc., Chem. Commun.
1986,
1319
<A NAME="RE13405SS-79">79</A>
Jayaraman M.
Srirajan V.
Deshmukh ARAS.
Bhawal BM.
Tetrahedron
1996,
52:
3741
<A NAME="RE13405SS-80A">80a</A>
Hartmann B.
Deprés JP.
Greene AE.
Freire de Lima ME.
Tetrahedron Lett.
1993,
34:
1487
<A NAME="RE13405SS-80B">80b</A>
Deprés JP.
Coelho F.
Greene AE.
J. Org. Chem.
1985,
50:
1972
<A NAME="RE13405SS-81">81</A>
Tochtermann W.
Haase M.
Dibbern R.
Tetrahedron Lett.
1988,
29:
189
<A NAME="RE13405SS-82">82</A>
Hwang KC.
J. Chem. Soc., Chem. Commun.
1995,
173
<A NAME="RE13405SS-83">83</A>
Quittmann W.
Roberge DM.
Bessard Y.
Org. Process Res. Dev.
2004,
8:
1036
<A NAME="RE13405SS-84">84</A>
Griffith WP.
Kwong E.
Synth. Commun.
2003,
33:
2945
<A NAME="RE13405SS-85">85</A>
Bäumer U.-St.
Schäfer HJ.
Electrochim. Acta
2003,
48:
489
<A NAME="RE13405SS-86">86</A>
Kaneda K.
Haruna S.
Imanaka T.
Kawamoto K.
J. Chem. Soc., Chem. Commun.
1990,
1467
<A NAME="RE13405SS-87A">87a</A>
Lee DG.
Spitzer UA.
J. Org. Chem.
1976,
41:
3644
<A NAME="RE13405SS-87B">87b</A>
Lee DG.
Chang VS.
Helliwell S.
J. Org. Chem.
1976,
41:
3644
<A NAME="RE13405SS-87C">87c</A>
Lee DG.
Helliwell S.
Chang VS.
J. Org. Chem.
1976,
41:
3646
For some representative examples, see:
<A NAME="RE13405SS-88A">88a</A>
Piatak DM.
Herbst G.
Wicha J.
Caspi E.
J. Org. Chem.
1969,
34:
116
<A NAME="RE13405SS-88B">88b</A>
Imajo S.
Kuritani H.
Shingu K.
Nakagawa M.
J. Org. Chem.
1979,
44:
3587
<A NAME="RE13405SS-88C">88c</A>
Kasai M.
Ziffer H.
J. Org. Chem.
1983,
48:
2346
<A NAME="RE13405SS-89">89</A>
Spitzer UA.
Lee DG.
J. Org. Chem.
1974,
39:
2468
<A NAME="RE13405SS-90">90</A>
Rosen TC.
De Clercq E.
Balzarini J.
Haufe G.
Org. Biomol. Chem.
2004,
2:
229
<A NAME="RE13405SS-91">91</A>
Ferraboschi P.
Grisenti P.
Manzocchi A.
Santaniello E.
J. Chem. Soc., Perkin Trans. 1
1990,
2470
<A NAME="RE13405SS-92">92</A>
Ramalingam K.
Nanjappan P.
Kalvin DM.
Woodard RW.
Tetrahedron
1988,
44:
5597
<A NAME="RE13405SS-93">93</A>
Hu J.
Zhang D.
Harris FW.
J. Org. Chem.
2005,
70:
707
For selected examples, see:
<A NAME="RE13405SS-94A">94a</A>
Kusakabe M.
Kitano Y.
Kobayashi Y.
Sato F.
J. Org. Chem.
1989,
54:
2085
<A NAME="RE13405SS-94B">94b</A>
Danishefsky SJ.
Maring C.
J. Am. Chem. Soc.
1985,
107:
7762
<A NAME="RE13405SS-94C">94c</A>
Brown AD.
Colvin EW.
Tetrahedron Lett.
1991,
32:
5187
<A NAME="RE13405SS-94D">94d</A>
Johnson CR.
Adams JP.
Collins MA.
J. Chem. Soc., Perkin Trans. 1
1993,
1
<A NAME="RE13405SS-95">95</A>
Danishefsky SJ.
DeNinno MP.
Chen S.
J. Am. Chem. Soc.
1988,
110:
3929
<A NAME="RE13405SS-96A">96a</A>
Carling RW.
Holmes AB.
Tetrahedron Lett.
1986,
27:
6133
<A NAME="RE13405SS-96B">96b</A>
Zibuck R.
Seebach D.
Helv. Chim. Acta
1988,
71:
237
<A NAME="RE13405SS-96C">96c</A>
Carling RW.
Clark JS.
Holmes AB.
Sartor D.
J. Chem. Soc., Perkin Trans. 1
1992,
95
<A NAME="RE13405SS-97">97</A>
Pattenden G.
Tankard M.
Tetrahedron Lett.
1993,
34:
2677
<A NAME="RE13405SS-98">98</A>
Griffith WP.
Shoair AG.
Suriaatmaja M.
Synth. Commun.
2000,
30:
3091
<A NAME="RE13405SS-99">99</A>
Yang D.
Chen F.
Dong Z.-M.
Zhang D.-W.
J. Org. Chem.
2004,
69:
2221
<A NAME="RE13405SS-100A">100a</A>
Petride H.
Costan O.
Draghici C.
Florea C.
Petride A.
Arkivoc
2005,
x:
18
<A NAME="RE13405SS-100B">100b</A>
Petride H.
Draghici C.
Florea C.
Petride A.
Central Eur. J. Chem.
2004,
2:
302
<A NAME="RE13405SS-100C">100c</A>
Sharma VB.
Jain SL.
Sain B.
Tetrahedron Lett.
2004,
45:
4281
<A NAME="RE13405SS-101">101</A>
Rodriguez CM.
Ode JM.
Palazon JM.
Martin VS.
Tetrahedron
1992,
48:
3571
<A NAME="RE13405SS-102A">102a</A>
Glass RS.
Broeker JL.
Tetrahedron
1991,
47:
5077
<A NAME="RE13405SS-102B">102b</A>
Su W.
Tetrahedron Lett.
1994,
35:
4955
<A NAME="RE13405SS-103A">103a</A>
Veale HS.
Levin J.
Swern D.
Tetrahedron Lett.
1978,
503
<A NAME="RE13405SS-103B">103b</A>
Ketcha DM.
Swern D.
Synth. Commun.
1984,
14:
915
<A NAME="RE13405SS-103C">103c</A>
Orita A.
An DL.
Nakano T.
Yaruva J.
Ma N.
Otera J.
Chem. Eur. J.
2002,
8:
2005
<A NAME="RE13405SS-104">104</A>
Gao Y.
Sharpless KB.
J. Am. Chem. Soc.
1988,
110:
7538
<A NAME="RE13405SS-105">105</A>
Sun P.
Weinreb SM.
J. Org. Chem.
1997,
62:
8604
<A NAME="RE13405SS-106">106</A>
Borg G.
Chino M.
Ellman JA.
Tetrahedron Lett.
2001,
42:
1433
<A NAME="RE13405SS-107">107</A>
Mueller RH.
DiPardo RM.
J. Chem. Soc., Chem. Commun.
1975,
565
<A NAME="RE13405SS-108">108</A>
Plietker B., manuscript in preparation.
<A NAME="RE13405SS-109">109</A>
Miranda LSM.
Vasconcellos MLAA.
Synthesis
2004,
1767
<A NAME="RE13405SS-110A">110a</A>
Bakke JM.
Bethell D.
Acta Chem. Scand.
1992,
46:
644
<A NAME="RE13405SS-110B">110b</A>
Bakke JM.
Frohaug AE.
Acta Chem. Scand.
1995,
49:
615
<A NAME="RE13405SS-111">111</A>
Clinch K.
Vasella A.
Schauer R.
Tetrahedron Lett.
1987,
28:
6425
<A NAME="RE13405SS-112">112</A>
Askin D.
Angst C.
Danishefsky S.
J. Org. Chem.
1987,
52:
622
<A NAME="RE13405SS-113">113</A>
Colletti SL.
Li C.
Fisher MH.
Wyvratt MJ.
Meinke PT.
Tetrahedron Lett.
2000,
41:
7825
<A NAME="RE13405SS-114">114</A>
Kolb HC.
Van Nieuwenhenze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2487
<A NAME="RE13405SS-115">115</A>
Johnson RA.
Sharpless KB. In
Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
Weinheim:
2000.
p.357