RSS-Feed abonnieren
DOI: 10.1055/s-2002-23535
Asymmetric Wittig Type Reactions
Publikationsverlauf
Publikationsdatum:
02. April 2002 (online)

Abstract
The Wittig reaction and related methods for synthesis of C=C double bonds belong to the standard repertoire of the synthetic chemist. Studies of asymmetric versions of these reactions have been increasing in recent years and applications of such processes to complex molecule synthesis have begun to emerge. In this review, we will emphasise the recent advances in developing methods and synthetic applications of these reactions, but earlier results will be covered as well to place the recent results in context.
- 
            1 Introduction 
- 
            2 Reactions with Achiral Monocarbonyl Substrates 
- 
            2.1 Reactions with Symmetrically Substituted Monoketones 
- 
            2.2 Synthesis of Chiral Allenes from Ketenes or Acid Halides 
- 
            3 Reactions with Chiral, Nonracemic Monoketones 
- 
            4 Kinetic Resolution 
- 
            4.1 Resolution of Racemic Monocarbonyl Compounds 
- 
            4.2 Resolution of Racemic Wittig Reagents 
- 
            5 Dynamic Resolution 
- 
            6 Other Strategies Based on Resolution of Enantiomers 
- 
            6.1 Parallel Kinetic Resolution 
- 
            6.2 Enantioconvergent Synthesis by Sequential Asymmetric HWE Reaction and Palladium-Catalyzed Nucleophilic Allylic Substitution 
- 
            7 Desymmetrization of Prochiral Dicarbonyl Substrates 
- 
            8 Future Perspectives, Concluding Remarks 
Key words
asymmetric synthesis - asymmetric Wittig reactions - kinetic resolution - enantioconvergent synthesis - desymmetrization
- 2a 
             
            Rein T.Reiser O. Acta Chem. Scand. 1996, 50: 369
- 2b 
             
            Li A.-H.Dai W.-M.Aggarwal VK. Chem. Rev. 1997, 97: 2341
- 2c 
             
            Bennani YL.Hanessian S. Chem. Rev. 1997, 97: 3161
- 2d 
             
            Nicolaou KC.Härter MW.Gunzner JL.Nadin A. Liebigs Ann. Recl. 1997, 1283
- 2e 
             
            Wiemer DF. Tetrahedron 1997, 53: 16609
- 2f 
             
            Tanaka K.Fuji K. J. Synth. Org. Chem. Jpn. 1998, 56: 521
- 2g 
             
            Kolodiazhnyi OI. Tetrahedron: Asymmetry 1998, 9: 1279
- 2h 
             
            Tomioka K.Hasegawa M. J. Synth. Org. Chem. Jpn. 2000, 58: 848
- 3 
             
            Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863
- 4 
             
            Amadji M.Vadecard J.Cahard D.Duhamel L.Duhamel P.Plaquevent J.-C. J. Org. Chem. 1998, 63: 5541 ; see also ref.33
- 5a 
             
            Johnson CR.Meanwell NA. J. Am. Chem. Soc. 1981, 103: 7667
- 5b 
             
            Erdelmeier I.Gais H.-J.Lindner HJ. Angew. Chem., Int. Ed. Engl. 1986, 25: 935
- 6 
             
            Solladié G.Zimmerman R.Bartsch R. Synthesis 1985, 662
- 7a 
             
            Komatsu N.Matsunaga S.Sugita T.Uemura S. J. Am. Chem. Soc. 1993, 115: 5847
- 7b 
             
            Komatsu N.Murakami T.Nishibayashi Y.Sugita T.Uemura S. J. Org. Chem. 1993, 58: 3697
- 7c 
             
            Nishibayashi Y.Singh JD.Uemura S. Tetrahedron Lett. 1994, 35: 3115
- 7d 
             
            Nishibayashi Y.Singh JD.Fukuzawa S.-I.Uemura S. J. Org. Chem. 1995, 60: 4114
- 8a 
             
            Fiaud JC.Legros JY. Tetrahedron Lett. 1988, 29: 2959Reference Ris Wihthout Link
- 8b 
             
            Fiaud JC.Legros JY. J. Organomet. Chem. 1989, 370: 383Reference Ris Wihthout Link
- 8c 
             
            Legros JY.Fiaud JC. Tetrahedron 1994, 50: 465Reference Ris Wihthout Link
- 9a 
             
            Harmat NJS.Warren S. Tetrahedron Lett. 1990, 31: 2743
- 9b 
             
            Clayden J.Warren S. Angew. Chem., Int. Ed. Engl. 1996, 35: 241
- 10 
             
            Tömösközi I.Janszó G. Chem. Ind. (London) 1962, 2085
- 12a 
             
            Bestmann HJ.Lienert J. Angew. Chem., Int. Ed. Engl. 1969, 8: 763
- 12b 
             
            Bestmann HJ.Heid E.Ryschka W.Lienert J. Liebigs Ann. Chem. 1974, 1684
- 13 
             
            Bestmann HJ.Lienert J. Chem.-Ztg. 1970, 94: 487
- 14a 
             
            Hanessian S.Delorme D.Beaudoin S.Leblanc Y. J. Am. Chem. Soc. 1984, 106: 5754
- 14b 
             
            Hanessian S.Beaudoin S. Tetrahedron Lett. 1992, 33: 7655
- 14c 
             
            Hanessian S.Beaudoin S. Tetrahedron Lett. 1992, 33: 7659
- 15a 
             
            Lemieux RP.Schuster GB. J. Org. Chem. 1993, 58: 100
- 15b 
             
            Zhang Y.Schuster GB. J. Org. Chem. 1994, 59: 1855
- 15c 
             
            Suarez M.Schuster GB. J. Am. Chem. Soc. 1995, 117: 6732
- 16a 
             
            Gais H.-J.Schmiedl G.Ball WA.Bund J.Hellmann G.Erdelmeier I. Tetrahedron Lett. 1988, 29: 1773
- 16b 
             
            Gais H.-J.Schmiedl G.Ossenkamp RKL. Liebigs Ann. Recl. 1997, 2419
- 17 
             
            Rehwinkel H.Skupsch J.Vorbrüggen H. Tetrahedron Lett. 1988, 29: 1775
- 18 
             
            Takahashi T.Matsui M.Maeno N.Koizumi T.Shiro M. Heterocycles 1990, 30: 353
- 19 
             
            Toda F.Akai H. J. Org. Chem. 1990, 55: 3446
- 20a 
             
            Denmark SE.Chen C.-T. J. Am. Chem. Soc. 1992, 114: 10674
- 20b 
             
            Denmark S.Rivera I. J. Org. Chem. 1994, 59: 6887
- 21 
             
            Furuta T.Iwamura M. J. Chem. Soc., Chem. Commun. 1994, 2167
- 22 
             
            Abiko A.Masamune S. Tetrahedron Lett. 1996, 37: 1077
- 23 
             
            Kumamoto T.Koga K. Chem. Pharm. Bull. 1997, 45: 753
- 24 
             
            Mizuno M.Fujii K.Tomioka K. Angew. Chem. Int. Ed. 1998, 37: 515
- 25 
             
            Sano S. Yakugaku Zasshi 2000, 120: 432
- 26 
             
            Arai S.Hamaguchi S.Shioiri T. Tetrahedron Lett. 1998, 39: 2997
- 27 
             
            Dai W.-M.Wu J.Huang X. Tetrahedron: Asymmetry 1997, 8: 1979
- 29 
             
            Bestmann HJ.Tömösközi I. Tetrahedron Lett. 1964, 1293
- 30a 
             
            Musierowicz S.Wroblewski AE.Krawczyk H. Tetrahedron Lett. 1975, 437
- 30b 
             
            Musierowicz S.Wroblewski AE. Tetrahedron 1980, 36: 1375
- 31 
             
            Tanaka K.Otsubo K.Fuji K. Tetrahedron Lett. 1996, 37: 3735
- 32 
             
            Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1985, 24: 1
- 33 
             
            Vaulont I.Gais H.-J.Reuter N.Schmitz E.Ossenkamp RKL. Eur. J. Org. Chem. 1998, 805
- 34a 
             
            Evans DA.Carter PH.Carreira EM.Prunet JA.Charette AB.Lautens M. Angew. Chem. Int. Ed. 1998, 37: 2354
- 34b 
             
            Evans DA.Carter PH.Carreira EM.Charette AB.Prunet JA.Lautens M. J. Am. Chem. Soc. 1999, 121: 7540
- 35 
             
            Ohmori K.Ogawa Y.Obitsu T.Ishikawa Y.Nishiyama S.Yamamura S. Angew. Chem. Int. Ed. 2000, 39: 2290
- 36 
             
            Tanaka K.Ohta Y.Fuji K.Taga T. Tetrahedron Lett. 1993, 34: 4071 ; this reagent was first introduced within the context of desymmetrization of a meso-diketone (Section 7)
- 37a 
             
            Kagan HB.Fiaud JC. Top. Stereochem. 1988, 18: 249
- 37b  See also:  
            Kagan HB. Tetrahedron 2001, 57: 2449
- 38 
             
            Johnson CR.Elliott RC.Meanwell NA. Tetrahedron Lett. 1982, 23: 5005
- 41 
             
            Rein T.Kann N.Kreuder R.Gangloff B.Reiser O. Angew. Chem. Int. Ed. Engl. 1994, 33: 556
- 43 
             
            Rein T.Anvelt J.Soone A.Kreuder R.Wulff C.Reiser O. Tetrahedron Lett. 1995, 36: 2303
- 44 
             
            Mendlik MT.Cottard M.Rein T.Helquist P. Tetrahedron Lett. 1997, 38: 6375
- 45 
             
            Kreuder R.Rein T.Reiser O. Tetrahedron Lett. 1997, 38: 9035
- 47 For a review of different models used for rationalizing the stereoselectivity of such
            reactions, see:  
            Mengel A.Reiser O. Chem. Rev. 1999, 99: 1191
- 48a 
             
            Norrby P.-O.Brandt P.Rein T. J. Org. Chem. 1999, 64: 5845
- 48b  For recent computational studies of the parent HWE reaction, see:  
            Brandt P.Norrby P.-O.Martin I.Rein T. J. Org. Chem. 1998, 63: 1280
- 48c  See also:  
            Ando K. J. Org. Chem. 1999, 64: 6815
- For exceptions, see:
- 49a  
            Ref. [21] Table 2, entry 1. Reference Ris Wihthout Link
- 49b  
            Ref. [45] Table 2, entry 12. Reference Ris Wihthout Link
- 50 
             
            Tanaka K.Watanabe T.Shimamoto K.-Y.Sahakitpichan P.Fuji K. Tetrahedron Lett. 1999, 40: 6599
- 51 
             
            Dai W.-M.Lau CW. Tetrahedron Lett. 2001, 42: 2541
- 52 
             
            Bestmann HJ.Tömösközi I. Tetrahedron 1968, 24: 3299
- 54 
             
            Pinsard P.Lellouche J.-P.Beaucourt J.-P.Grée R. Tetrahedron Lett. 1990, 31: 1137
- 55a 
             
            Noyori R.Tokunaga M.Kitamura M. Bull. Chem. Soc. Jpn. 1995, 68: 36
- 55b 
             
            Ward RS. Tetrahedron: Asymmetry 1995, 6: 1475
- 55c 
             
            Caddick S.Jenkins K. Chem. Soc. Rev. 1996, 25: 447
- 56 
             
            Narasaka K.Hidai E.Hayashi Y.Gras J.-L. J. Chem. Soc., Chem. Commun. 1993, 102
- 57 
             
            Rein T.Kreuder R.von Zezschwitz P.Wulff C.Reiser O. Angew. Chem., Int. Ed. Engl. 1995, 34: 1023
- 59 
             
            Gante J. Angew. Chem., Int. Ed. Engl. 1994, 33: 1699 ; and references therein
- 60a 
             
            Vedejs E.Chen X. J. Am. Chem. Soc. 1997, 119: 2584
- 60b 
             
            Bertozzi F.Crotti P.Macchia F.Pineschi M.Feringa BL. Angew. Chem. Int. Ed. 2001, 40: 930 ; and references therein
- 61 
             
            Pedersen TM.Jensen JF.Humble RE.Rein T.Tanner D.Bodmann K.Reiser O. Org. Lett. 2000, 2: 535
- 62 
             
            Pedersen TM.Hansen EL.Rein T.Kane J.Helquist P.Norrby P.-O.Tanner D. J. Am. Chem. Soc. 2001, 123: 9738
- 64 
             
            Schreiber SS.Schreiber TS.Smith DB. J. Am. Chem. Soc. 1987, 109: 1525
- 65a 
             
            Trost BM.Curran DP. J. Am. Chem. Soc. 1980, 102: 5699
- 65b 
             
            Trost BM.Curran DP. Tetrahedron Lett. 1981, 22: 4929
- 66 Later research indicates that the addition step is irreversible also for stabilized
            ylides, see:  
            Vedejs E.Peterson MJ. Top. Stereochem. 1994, 21: 1
- 67 
             
            Tanaka K.Watanabe T.Ohta Y.Fuji K. Tetrahedron Lett. 1997, 38: 8943
- 68a 
             
            Kann N.Rein T. J. Org. Chem. 1993, 58: 3802
- 68b 
             
            Tullis JS.Vares L.Kann N.Norrby P.-O.Rein T. J. Org. Chem. 1998, 63: 8284
- 68c 
             
            Rein T.Vares L.Kawasaki I.Pedersen TM.Norrby P.-O.Brandt P.Tanner D. Phosphorus, Sulfur, and Silicon 1999, 144-146: 169
- 69a 
             
            Vares L.Rein T. Org. Lett. 2000, 2: 2611
- 69b  
            Vares, L.; Rein, T., manuscript in preparation. 
- 70 
             
            Mandai T.Kaihara Y.Tsuji J. J. Org. Chem. 1994, 59: 5847
References
Present address.
11Later results have cast some doubt on the levels of asymmetric induction reported in this paper; see ref. [14a]
28The structure of the alkyl group in the phosphoryl unit was not specified in the original article.
39The stoichiometry of the reaction, i.e. the ratio of 63:64, was not reported.
40The yields given are based on the Wittig type reagent as limiting reactant; 2 equivalents of the substrate were used.
42The descriptors R and S refer to the stereocenter originating from the substrate.
46Note that the chiral reagents 14b and 25 all contain the same enantiomer of the chiral auxiliary.
53The absolute configuration of the product was only tentatively assigned.
58This can be explained by the fact that the slower reacting enantiomer is continuously racemized and thus not accumulated as in an ordinary kinetic resolution.
63This is of course primarily an issue in intermolecular reactions, where the functional groups involved in the reaction can be present in different amounts.
 
    