RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258106
Highly Stereoselective Preparation of Chiral α-Substituted Sulfides from α-Chloro Sulfides via 1,2-Asymmetric Induction
Publikationsverlauf
Publikationsdatum:
30. Juni 2010 (online)

Abstract
A C-S stereogenic center is created with efficient stereocontrol by 1,2-asymmetric induction due to a vicinal C-O stereogenic center. Propargylic, allylic, and alkyl sulfides are readily prepared in good yield and stereoselectivity from α-chloro sulfides. The allylic sulfide have been converted to the corresponding sulfoxide/sulfilimine/sulfur ylide and subjected to [2,3]-sigmatropic rearrangement. The efficient 1,3-chirality transfer observed in this reaction eventually results in a net 1,4-chirality transfer.
Key words
α-chloro sulfide - rearrangement - sulfoxide - stereoselective synthesis - asymmetric induction
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
Mitzel TM.Palomo C.Jendza K. J. Org. Chem. 2002, 67: 136 - 2
Frimpong K.Wzorek J.Lawlor C.Spencer K.Mitzel T. J. Org. Chem. 2009, 74: 5861 - 3
Pelc MJ.Zakarian A. Tetrahedron Lett. 2006, 47: 7519 - 4
Armstrong A.Challinor L.Moir JH. Angew. Chem. Int. Ed. 2007, 46: 5369 - 5
Ma M.Peng L.Li C.Zhang X.Wang J. J. Am. Chem. Soc. 2005, 127: 15016 - 6a
Wee AGH.Shi Q.Wang Z.Hatton K. Tetrahedron: Asymmetry 2003, 14: 897Reference Ris Wihthout Link - 6b
Bach T.Korber CJ. J. Org. Chem. 2000, 65: 2358Reference Ris Wihthout Link - 7a
Inoue M.Miyazaki K.Uehara H.Maruyama M.Hirama M. Proc. Natl. Sci. U.S.A. 2004, 101: 12013Reference Ris Wihthout Link - 7b For a review, see:
Dilworth BM.McKervey MA. Tetrahedron 1986, 42: 3731Reference Ris Wihthout Link - 8a
Normant H.Castro CR. C. R. Hebd. Seances Acad. Sci. 1964, 259: 830Reference Ris Wihthout Link - 8b
Gross H.Hoft E. Angew. Chem., Int. Ed. Engl. 1967, 6: 335Reference Ris Wihthout Link - 8c
Ogura K.Fujitha M.Takahashi K.Iida H. Chem. Lett. 1982, 11: 1697Reference Ris Wihthout Link - 8d
Cohen T.Matz JR. J. Am. Chem. Soc. 1985, 106: 6902Reference Ris Wihthout Link - 8e
Nakatsuka S.Takai K.Utimoto K. J. Org. Chem. 1986, 51: 5045Reference Ris Wihthout Link - 9
Chu DTH. J. Org. Chem. 1983, 48: 3571 - 10a
Paterson I.Fleming I. Tetrahedron Lett. 1979, 993Reference Ris Wihthout Link - 10b
Paterson I. Tetrahedron 1988, 44: 4207Reference Ris Wihthout Link - 10c
Reetz MT.Huttenhain S.Walz P.Lowe U. Tetrahedron Lett. 1979, 4971Reference Ris Wihthout Link - 10d
Groth U.Huhn T.Richter N. Liebigs Ann. Chem. 1993, 49Reference Ris Wihthout Link - 11a
Bohme H. Ber. Dtsch. Chem. Ges. 1936, 69: 1610Reference Ris Wihthout Link - 11b
Vedejs E.Mullins MJ.Renga JM.Singer SP. Tetrahedron Lett. 1978, 519Reference Ris Wihthout Link - 11c
Arai K.Iwamura H.Oki M. Bull. Chem. Soc. Jpn. 1975, 48: 3319Reference Ris Wihthout Link - 12
Bordwell FG.Pitt BM. J. Am. Chem. Soc. 1955, 77: 572 - 13 For the preparation of the acetate
corresponding to sulfide 6, see:
Taniguchi N. J. Org. Chem. 2006, 71: 7874 ; the resulting acetate was hydrolyzed and the hydroxy group protected as its silyl ether - 14 Anhydrous zinc bromide was prepared
as a 1.5 M solution in dry THF by heating at reflux for 2 h a 1.5
M solution of DCE containing excess acid washed zinc, see:
Brown DS.Charreau P.Hansson T.Ley SV. Tetrahedron 1991, 47: 1311 - 16 (Z)-1-Octenylmagnesium
bromide was prepared from (Z)-1-bromo
octene and Mg turnings while (E)-1-octenyl-magnesium
chloride was prepared from (E)-1-iodo
octene by halogen-metal exchange, see:
Ren H.Krasovskiy A.Knochel P. Org. Lett. 2004, 6: 4215 - 20a
Trost BM.Belletire JL.Godleski S.McDougal PG.Balkovec JM. J. Org. Chem. 1986, 51: 2370Reference Ris Wihthout Link - 20b
Trost BM.Bunt RC.Pulley SR. J. Org. Chem. 1994, 59: 4202Reference Ris Wihthout Link - 21a
Miller EG.Rayner DR.Mislow K. J. Am. Chem. Soc. 1966, 88: 3139Reference Ris Wihthout Link - 21b
Braverman S.Stabinsky Y. Chem. Commun. 1967, 270Reference Ris Wihthout Link - 21c
Evans DA.Andrews GC. Acc. Chem. Res. 1974, 7: 147Reference Ris Wihthout Link - 22
Armstrong A.Emmerson DPG. Org. Lett. 2009, 11: 1547 - 23a
McLaughlin JL. J. Nat. Prod. 2008, 71: 1311Reference Ris Wihthout Link - 23b
Davoren JE.Harcken C.Martin SF. J. Org. Chem. 2008, 73: 391Reference Ris Wihthout Link - 24
Petranek J.Vecera M. Collect. Czech. Chem. Commun. 1959, 24: 2191 - 25a
Kirmse W.Kapps M. Chem. Ber. 1968, 101: 994Reference Ris Wihthout Link - 25b
Doyle MP.Griffin JH.Chinn MS.van Leusen D. J. Org. Chem. 1984, 49: 1917Reference Ris Wihthout Link - 26
Calo V.Nacci A.Fiandanese V.Volpe A. Tetrahedron Lett. 1997, 38: 3289
References and Notes
The reaction of chloro sulfide 7 with 1-octynylmagnesium chloride proceeded to afford the product in lower yield (50%), while reaction with 1-lithio octyne did not yield any desired product.
17
General Experimental
Procedure
To a solution of 1-octyne (165 mg, 1.5 mmol)
in dry THF (0.8 mL) cooled at -10 ˚C
was added i-PrMgCl˙LiCl (1 mL, 1.5
mmol, 1.5 M in THF) and stirred for 30 min at the same temperature.
To the so generated Grignard reagent, ZnBr2 (1.1 mL,
1.65 mmol, 1.5 M in THF) was added at 0 ˚C and stirred
for 30 min. To the organozinc reagent maintained at 0 ˚C
was added a solution of chloro sulfide (0.5 mmol) in benzene (5
mL), the reaction mixture stirred gradually allowing it to attain
r.t., and stirred further for a period of 7 h when TLC examination
indicated complete consumption of the chloro sulfide. The reaction
mixture was cooled to 0 ˚C and quenched by the
addition of an aq sat. NH4Cl solution. It was allowed
to warm to r.t. and diluted with
Et2O (5 mL),
the layers were separated and aqueous layer extracted with Et2O
(3 × 10 mL). The combined organic layers
were washed with H2O (5 mL), brine (5 mL), dried over
Na2SO4, and the solvent evaporated under reduced pressure
to afford a crude compound which was purified by column chromatography
using hexanes as the eluent to afford the pure product 9a (192 mg, 0.43 mmol) in 86% yield as
a liquid. TLC: R
f
= 0.34 (hexanes). IR (KBr):
3445, 3063, 2954, 2928, 1586, 1463, 1384, 1253, 1094, 827, 837,
777, 695 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 7.60-7.30
(m, 10 H), 4.91 (d, J = 6.8
Hz, 1 H), 4.16 (td, J = 2.3,
6.8 Hz, 1 H), 2.16 (dt, J = 2.3,
6.8 Hz, 2 H), 1.50-1.15 (m, 8 H), 1.00-0.90 (m,
12 H), 0.20 (s, 3 H), 0.0 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 142.00, 135.62,
132.11, 128.58, 127.82, 127.69, 127.36, 126.89, 87.32, 77.45, 48.91,
31.45, 28.51, 28.47, 25.89, 22.62, 18.35, 14.20, -4.55, -4.83.
ESI-MS: m/z 469 [M + NH4]+.
ESI-HRMS: m/z calcd for C28H40ONaSiS: 475.2467;
found: 475.2466.
Substrate 13 was prepared by deprotection of acetonide moiety in 10 followed by protection of the resulting diol, see Supporting Information.
19The signals for the olefinic, methine protons of the acetonide and CH 2OBn appear downfield in ester 18 compared to the corresponding protons of ester 19, see Supporting Information.